Agnes Scott College
Larry Riddle, Agnes Scott College

Four Symmetric Sierpinski Relatives

There are 8 symmetric Sierpinski relatives. The four videos below illustrates the construction of those symmetric relatives using just rotations (transformations 1, 2, 3, and 4) where the lower left piece is not rotated (transformation 1).

image
Relative 111

The IFS for relative 111 is

$$\begin{array}{l} {f_1}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0.5} & 0 \\ 0 & {0.5} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} 0 \\ {0.5} \\ \end{array}} \right] \\ {f_2}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0.5} & 0 \\ 0 & {0.5} \\ \end{array}} \right]{\bf{x}} \\ {f_3}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0.5} & 0 \\ 0 & {0.5} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} {0.5} \\ 0 \\ \end{array}} \right] \\ \end{array}$$


image
Relative 214

The IFS for relative 214 is

$$\begin{array}{l} {f_1}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0} & -0.5 \\ 0.5 & {0} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} 0.5 \\ {0.5} \\ \end{array}} \right] \\ {f_2}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0.5} & 0 \\ 0 & {0.5} \\ \end{array}} \right]{\bf{x}} \\ {f_3}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0} & 0.5 \\ -0.5 & {0} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} {0.5} \\ 0.5 \\ \end{array}} \right] \\ \end{array}$$


image
Relative 313

The IFS for relative 313 is

$$\begin{array}{l} {f_1}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {-0.5} & 0 \\ 0 & {-0.5} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} 0.5 \\ {1} \\ \end{array}} \right] \\ {f_2}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0.5} & 0 \\ 0 & {0.5} \\ \end{array}} \right]{\bf{x}} \\ {f_3}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {-0.5} & 0 \\ 0 & {-0.5} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} {1} \\ 0.5 \\ \end{array}} \right] \\ \end{array}$$


image
Relative 412

The IFS for relative 412 is

$$\begin{array}{l} {f_1}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0} & 0.5 \\ -0.5 & {0} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} 0 \\ {1} \\ \end{array}} \right] \\ {f_2}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0.5} & 0 \\ 0 & {0.5} \\ \end{array}} \right]{\bf{x}} \\ {f_3}({\bf{x}}) = \left[ {\begin{array}{*{20}{c}} {0} & -0.5 \\ 0.5 & {0} \\ \end{array}} \right]{\bf{x}} + \left[ {\begin{array}{*{20}{c}} {1} \\ 0 \\ \end{array}} \right] \\ \end{array}$$