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ABSTRACT: This article explores the ways that a computer algebra system may be used
in conjunction with plotting software to allow students to investigate the
convergence properties of Riemann sums for functions of one or two variables in a
way that is not possible with just numerical calculations. Explicit formulas for the
Riemann sums suggest algebraic combinations that lead to the trapezoid and
Simpson’s rules as a way to improve the rate of convergence.
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In many recent calculus texts (and some of the older ones, too!), the definite
integral is first thought of geometrically as area, and some form of the Fundamental
Theorem is often obtained through constructing and solving a differential equation. Only
later is a connection made with the analytic definition of the integral as the limit of a
Riemann sum. One of the main stumbling blocks with using Riemann sums to define
the definite integral for beginning calculus students has been the difficulty in
expressing the Riemann sum in a closed form that permits the evaluation of the limit.
Without this step we have been forced to rely mainly on numerical calculations and
animated pictures of rectangles “filling” the region under the curve as more and more
(thinner) rectangles are drawn to convince our students that these sums actually do
converge. Computer algebra systems such as Derive, Mathematica, and Maple, however,
can easily simplify Riemann sums for all polynomials and for functions of the form

    sin( )mx ,     cos( )mx , and   e
mx , thereby providing a wealth of examples involving the

standard functions of calculus that students can use to investigate the convergence
properties of these sums. In particular, we would like our students to
• understand the definition of a Riemann sum;
• demonstrate that the limit of a Riemann sum is the same for (almost) any choice of

points from each subinterval;
• appreciate the different rates of convergence of the approximating sums; and
• investigate combinations of these Riemann sums that lead to better approximations.
The following examples illustrate some of the investigations I use with students to
achieve these goals.



Page 2

Example 1.  Polynomials   
    

x x x x dx4 3 2
0

2
2 3 1+ + − +( )∫

Our calculus classes meet in a computerized classroom to work on special
projects and assignments. I first have the students investigate a common function such
as this one. We construct the Riemann sum for this integral using n subintervals of
uniform width ∆x over the interval [0, 2]. I purposely chose the interval of integration to
start at 0 to simplify the sum, but the same ideas can be explored using any interval.
With     F x x x x x( ) = + + − +4 3 22 3 1, we use our computer algebra system1 to compute the
Riemann sum using the right endpoint of each subinterval and obtain

    

F k x x x n x n n n n x n n
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At this point the expression is still written in terms of both ∆x and n. A choice needs to be
made to either substitute for ∆x in terms of n, or to substitute for n in terms of ∆x. The
former would led to the limit as n approaches infinity, while the latter would be used for
the limit as ∆x approaches 0. Simplifying the expression obtained by substituting

    n x= 2 ∆  gives the right Riemann sum as
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Repeating the same steps for the Riemann sum using the left endpoint of each of the n
subintervals gives

    
Left( ) (( ) )∆ ∆ ∆x F k x x
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= −
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In both cases we easily see that the limit of the Riemann sum as ∆x goes to 0 is   196 15.
Moreover, the two expressions differ only in the ∆x term! This, of course, is not
surprising once the students realize that the only difference between the right Riemann
sum and the left Riemann sum is at the two endpoints of the interval of integration, so
that     Right Left( ) ( ) ( ) ( )∆ ∆ ∆x x F F x− = −( )2 0 . Another interesting observation—there is no

    ∆x3 term. A coincidence?

1We use Derive in the classroom but the results shown in this paper were obtained using Mathematica
2.2 for the Macintosh. To compute the sum on the interval [a,b] in Derive, first declare dx to be a
positive constant, author the function F, then author sum(F(a+k*dx)dx,k,1,n). Simplify the result,
substitute (b-a)/dx for n, then expand this result. In Mathematica, load the SymbolicSum package,
define the function F, then compute Apart[Simplify[Sum[F[a+k*dx]*dx,{k,1,n}]/.{n->(b-
a)/dx}]].
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While these expressions for the Riemann sums are only valid for ∆x of the form
2/n for an integer value of n, it is nevertheless interesting to view them as functions of ∆x
and to draw their graphs on the interval [0, 2]. The upper curve in Figure 1 is the graph
of Right(∆x) and the lower curve is that of Left(∆x). After I have the students generate
these curves, we discuss how the limits found from the symbolic sums are reflected in
the graph. What is clear from these graphs is that both sums converge to the same limit
but at an apparent slow rate as evidenced by the slope of each curve as ∆x approaches 0.
To make this idea more precise, we discuss how the difference between each Riemann
sum and the limiting value   196 15, that is, the error in the approximation, is controlled
primarily by the linear terms     ±15∆x for values of ∆x near 0.

0 0.5 1 1.5 2

5

10

15

20

25

30

35

40

Right

Left

FIGURE 1
The right and left Riemann sums as functions of ∆x.

A Riemann sum is supposed to converge to the same limit for any choice of points
from each subinterval. While it is not possible to have a computer algebra system
compute a closed-form expression for a sum using randomly chosen points from each
subinterval, we can ask for the sum if we use a consistent method for choosing the
points. In particular, if we let the points be chosen at a distance of   s x∆  from the right
endpoint of each subinterval where s ranges between 0 (corresponding to the right
endpoints) and 1 (indicating left endpoints), then we get an “arbitrary” Riemann sum
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The students now observe that it is indeed the case that this sum converges to

  196 15 for every choice of s as ∆x goes to 0. Another observation is that for s =   1 2 the
coefficient of ∆x vanishes and the error in the approximation is now controlled primarily
by a quadratic term in ∆x. This suggests that the midpoint Riemann sum
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should provide a better approximation to the value of the integral than using the right or
left endpoints. (As a side bonus, the     ∆x3 term has also dropped out.) Finally, a closer look
at the expressions for the right and left Riemann sums reveals that the linear term may
also be eliminated by taking the average of the two sums, yielding the trapezoid rule
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( ) ( )∆ ∆ ∆ ∆ ∆
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.

In Figure 2, I have the students compare the graphs of the three Riemann sums
and the trapezoid rule as functions of ∆x. Figures 3 and 4 show the same graphs but for
values of ∆x closer to 0. They illustrate the difference, respectively, between the linear
convergence of the right and left Riemann sums, and the quadratic convergence of the
midpoint Riemann sum and the trapezoid rule.
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FIGURE 2
The right, left and midpoint Riemann sums, and the trapezoid approximations, as functions of ∆x.
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FIGURE 3 FIGURE 4
The linear convergence of the right The quadratic convergence of the
and left Riemann sums. midpoint sum and the trapezoid rule.
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As a final investigation with these sums, we talk about how one might eliminate
the quadratic term from the approximation for the integral. It is clear in this example
that a weighted average involving twice the midpoint expression plus the trapezoid
expression should be used, giving Simpson’s rule in the form

    
Simp

2 Mid Trap
( )

( ) ( )∆ ∆ ∆ ∆
x

x x x= + = +
3

196
15 60

4
.

This version of Simpson’s rule differs from the classical one, however, in the meaning of
n and ∆x. For example, when ∆x = 0.40 there would be five intervals for the midpoint and
trapezoid rules. In this case, Simp(0.40) would be the approximation obtained by using
the left and right endpoints and the midpoint of five intervals of width ∆x, and hence
would correspond to ten intervals of width 0.20 in the classical Simpson’s rule. In Figure
5 we add the graph of Simp(∆x) to the previous ones and notice the tremendous
improvement in the rate of convergence of the Simpson approximation. This is due to the
fact that the convergence is now controlled by the fourth power of ∆x.
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FIGURE 5
All five approximations considered as functions of ∆x.

Do these observations hold for the integration of other polynomials? I like to have
each student investigate her own polynomial as a homework project, usually
constructed using digits from the student’s social security number. This provides
numerous examples that can be used for classroom discussion and conjectures. Each
student is asked to compute the formulas for the approximating sums using left
endpoints, right endpoints, midpoints, the trapezoid rule, and Simpson’s rule, in the
form given above, and then to address the following issues:

1. Use the definition to compute the value of each approximation when using three
subintervals. The idea here is to make sure you understand how each approximation
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is constructed by doing the calculations yourself. This also provides a check that the
symbolic calculations were done correctly.

2. For each sum, compute the limit as ∆x goes to 0 and compare this with the value of
the definite integral obtained using the antiderivative.

3. Draw the graphs of LEFT(∆x), RIGHT(∆x), MID(∆x), TRAP(∆x), and SIMP(∆x) in the
same window. The vertical scale should be chosen so that one can clearly see what is
happening to the graphs near ∆x = 0. Discuss how the limits from part (2) are
reflected in the graphs. Describe any other interesting aspects of the graphs that
relate to your approximations of the definite integral.

4. For each sum, decide whether the error is approximately proportional to ∆x,     ( )∆x 2,

    ( )∆x 3, or     ( )∆x 4  for small values of ∆x. How can you tell?
5. For small values of ∆x, are the errors for the left and right rules approximately equal

in absolute value and opposite in sign? How can you tell? For small values of ∆x, is the
error for the midpoint rule about half the size of the trapezoid error and opposite in
sign? How can you tell?

It is particularly instructive if there is at least one cubic polynomial among the
examples, since Simpson’s rule will give the exact value of the definite integral for every
value of ∆x. Of course, a computer algebra system can evaluate all these sums for a
polynomial with symbolic coefficients as well as it can for one with specific numeric
coefficients.2  Such an approach would verify that these properties hold in general but
may not provide much insight into the reasons why. It might, however, provide
motivation for additional study later in a real analysis or numerical analysis course.

2For example, the trapezoid rule for the integral of     Ax Bx Cx Dx E4 3 2+ + + +  on the interval [0,2] is
given by

    
Trap constant( )∆ ∆ ∆

x
A

B
C

x
A x= + + +





−8
3 3 15

2
4

and Simpson’s rule is

    
Simp constant( )∆ ∆

x
A x= +

4

60
.
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Example 2.  The Sine Function  
    

sin( )x dx
0

2
∫

This is an example I usually do in the computer lab or assign as a special project.
Once again we set up the Riemann sums using n subintervals of equal width ∆x on the
interval [0, 2] for the cases using right and left endpoints. After evaluating these sums
with Mathematica and substituting     2 ∆x for n, we obtain3

    
Right( ) csc sin( ) sin ,∆ ∆ ∆ ∆

x x
x x= 



 +



2

1 1
2

    
Left( ) csc sin( ) sin .∆ ∆ ∆ ∆

x x
x x= 



 −



2

1 1
2

It seems clear that each sum will have the same limit as ∆x goes to 0 since the only
difference between the two is in the last sine function of each expression, but it is
perhaps not as clear what the value of this limit will be. Of interest, however, is the
observation that almost the same expression,     sin( )x x, is involved as is found in
determining the derivative of the sine function from the difference quotient. This
problem therefore gives a nice application of some of the ideas about limits and leads to
the conclusion that both of the Riemann sums converge to   2 12sin ( ) .4

What about the Riemann sums using points other than at the endpoints of the
subintervals? Using the same parameter s as in Example 1, we find that the sum using
the point at a distance s∆x from the right endpoint of each subinterval is given by

    
sin ( ) csc sin( ) sink s x x x

x x
s x

k

n
−( ) = 



 + −





=
∑ ∆ ∆ ∆ ∆ ∆ ∆

1 2
1 1

2
.

Again we see that the sum converges to   2 12sin ( )  as ∆x goes to 0 for every choice of s.
Moreover, the choice of s =   1 2 simplifies the last part of this expression and gives the
midpoint Riemann sum as

    
Mid( ) csc sin ( )∆ ∆ ∆

x x
x= 



2

12 .

3Derive, version 2.50, gives the answer

    
Right( )

cot( )
sin( )

cos
sin

∆ ∆ ∆ ∆
∆

∆ ∆
∆

x
x x x

x
x x

x
= + −

+( )
( )2 2

2 2
2 2

.

The Student Edition of Maple V, Release 2, gives

    
Right( )

sin( ) cos( ) sin( ) sin( ) cos( ) sin( )
cos( )

∆
∆ ∆ ∆ ∆ ∆ ∆ ∆

∆
x

x x x x x x x
x

=
− + + + + + −( )

−
2 2 2 2

1
.

4The result from using antiderivatives would give   1 2− cos( ) . It is an easy use of trigonometric
identities to show that these two expressions are the same.
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The trapezoid rule for this integral simplifies to

    
Trap

Right Left
( )

( ) ( )
cot sin ( )∆ ∆ ∆ ∆ ∆

x
x x

x
x= + = 



2 2

12 .

The reader is invited to graph the three Riemann sums and the trapezoid
approximation considered as functions of ∆x to notice that the behavior of the
convergence to the limit as ∆x goes to 0 looks very similar to that in Figure 2. An
interesting discussion for the students is whether the relative positions of the curves in
the graph of the respective sums versus ∆x are reasonable in light of the behavior of the
function under investigation.

A more precise analysis of the rates of convergence of these approximations
provides an application of Taylor series for those students who have covered this
material. For example, using Mathematica to compute the Taylor series at 0 shows that

    
Mid( ) sin ( )

sin ( ) sin ( )
( )∆ ∆ ∆ ∆x x x O x= + + +2 1

1
12

7 1
2880

2
2

2
2

4 6

and

    
Trap( ) sin ( )

sin ( ) sin ( )
( )∆ ∆ ∆ ∆x x x O x= − − +2 1

1
6

1
360

2
2

2
2

4 6 .

Again, notice that Simpson’s rule will eliminate the     ∆x2  terms and produce an
approximation that has a rate of convergence controlled by the fourth power of ∆x.

Example 3.  Double Integrals  
    

( )x y x xy dydx3 2 2

0

2

0

1
2 1− + +∫∫

I like to return to this topic when introducing multiple integrals. Again, this is
usually done in a laboratory setting with students working on a common function,
followed later by individual projects. We take as our definition of the double integral the
one found in [2, p.281]. For a function f of two variables, we construct a double Riemann
sum of the form

    
f c x ykh

k

n

h

n
( )∆ ∆

==
∑∑

11

over a rectangle     R a b c d= ×[ , ] [ , ]  by partitioning each of the intervals     [ , ]a b  and     [ , ]c d
into n subintervals of width     ∆x b a n= −( )  and     ∆y d c n= −( ) , respectively, and choosing
a point   ckh  in each of the     n

2 subrectangles. The function is integrable if the sequence of
sums so constructed converges to a limit S as   n → ∞  and the limit S is the same for any
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choice of points   ckh . This is not the most general definition of the double integral but is
one that works well for investigations with computer algebra systems.

There are several strategies the students can use to pick the points   ckh  for this
particular example on the rectangle   [ , ] [ , ]0 1 0 2× , some of which are illustrated in
Figure 6. To reduce the amount of computations, I have each student pick just one
corner point to use for the Riemann sum. For example, if we use the upper right corner
point of each subrectangle, then the double Riemann sum evaluates to

    

f k x h y x y x yn x x y x n x yn

x y n x n x yn x y n x y n

x y n x y

k

n

h

n
( , ) [∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆

==
∑∑ = − + − +

+ − + + +

+ +
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c + (h − 1)∆y

c + h∆y

FIGURE 6
Partition of R and possible choices for where to evaluate the function.

It is convenient to express this sum entirely in terms of   ∆x. Substituting     n x= 1 ∆  and

    ∆ ∆y x= 2  gives the sum for the upper right corner as

    
UR( )∆ ∆ ∆ ∆ ∆x x x x x= + + + +7

3
7
3

10
3

5
3

1
3

2 3 4 .

In a similar way we obtain for each of the choices of the other three corners the
following double Riemann sums:

(upper left)

    
UL( ) ( ) ,∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆x f k x h y x y x x x x

k
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n
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8
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1
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1
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2 3 4
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(lower left)

    
LL( ) ( ) , ( )∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆x f k x h y x y x x x x
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n
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(lower right)

    
LR( ) , ( )∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆x f k x h y x y x x x x
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There are several observations I try to get the students to make from these results.
First, in all four cases, the limit as     ∆x → 0 is equal to   7 3 . Second, the sums converge to
this limit at a (slow) linear rate governed by the   ∆x term for values of ∆x near 0 (i.e., for
large values of n.) This is illustrated graphically in Figure 7 where     UR( )∆x ,     UL( )∆x ,

    LL( )∆x , and     LR( )∆x  are plotted for values of ∆x near 0. Finally, averaging the four
Riemann sums produces a new approximation that converges to   7 3  at a quadratic rate
governed by a     ∆x2  term for small values of ∆x, and also eliminates the     ∆x3 term.
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Figure 7
The Riemann sums using each of the possible corner points,

considered as functions of ∆x.

There are many other questions about double Riemann sums that students can
investigate with the aid of a computer algebra system. For example, what happens for
this example with an “arbitrary” double sum of the form

    
f k s x h t y x y

k

n

h

n
( ) , ( )− −( )

==
∑∑ ∆ ∆ ∆ ∆

11
?

Does this sum converge to   7 3  for all choices of s and t ? What choices of s and t will
result in a double Riemann sum that has a quadratic rate of convergence? Is there a
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choice of s and t that will eliminate both the ∆x term and the     ∆x3 term?5 If so, how can
this double Riemann sum and the average of the four Riemann sums given above be
combined to improve the rate of convergence, that is, what is the corresponding
Simpson’s rule for functions of two variables?

Conclusion

A computer algebra system allows students to experiment with the concept of the
Riemann sum in a way that is not possible with just numerical calculations (see [1], [3]
and [4] for similar approaches.) The results demonstrate rather convincingly that these
sums do converge to the same value for the definite integral that is obtained using
antiderivatives and the Fundamental Theorem. Moreover, the investigations about rates
of convergence illustrate approximation techniques that students can exploit when
having to integrate functions represented only by tabular data rather than by explicit
formulas. Finally, students can investigate many interesting examples in addition to the
ones mentioned in this article, such as the Riemann sums of     x x2 sin() , a function that
ordinarily would require integration by parts6, or the double Riemann sums for

    sin( )x y+  over a rectangle, or even triple Riemann sums for functions of three variables
defined over a box in 3-space.
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Appendix 1

We show here why the trapezoid and midpoint rules for polynomials only involve
even powers of ∆x. The results are easily extended to other functions represented by
Taylor series.

Let P be a polynomial of degree r. Divide the interval [a, b] into n subintervals of
width     ∆x b a n= −( ) . Let   ck represent the midpoint of the kth subinterval. Then on the
kth subinterval
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For each value of i there is, by the Intermediate Value Theorem, a value   xi in the
interval [a, b] such that
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Now the trapezoid rule can be written as

    

Trap( ) ( ( ) ) ( )

( )
!

!
( )

( )

( )

∆ ∆ ∆ ∆

∆ ∆ ∆

∆

x
x

P a k x P a k x

x P c
i

x x

x
i

P c

k

n

i
k

i i

i

r

k

n

i
k

k

n

i

= + − + +[ ]

= −



 + 

















=












=

==

==

∑

∑∑

∑

2
1

2 2 2

2
1

1

01

100

0

0

2 2

2
1

2 2

2 2 2

r i i

i
i

i

r i i

i
i

i

r i i

x x

x
i

nP x
x x

b a P x
i

x x

∑

∑

∑

−



 + 

















= [ ] −



 + 

















= − −



 + 







=

=

∆ ∆

∆ ∆ ∆

∆ ∆

!
( )

( )
!

( )

( )











.



Page 13

The odd values of i result in the cancellation of the ∆x terms and therefore only the even
powers of ∆x remain.

Since     Right Left( ) ( ) ( ( ) ( ))∆ ∆ ∆x x P b P a x− = − , the right and left Riemann sums
differ only in the ∆x term. On the other hand, the average of the right and left Riemann
sums is the trapezoid expression which, as we’ve just seen, has no odd powers of ∆x.
Thus neither the right Riemann sum nor the left Riemann sum can contain any odd
powers of ∆x other than the linear term.

Let F be an antiderivative of the polynomial P. Using the same notation as above,
notice that on the kth subinterval
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x

F c
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Using the Intermediate Value Theorem on the function F, we now get
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This last expression contains only even powers of ∆x corresponding to the odd values of i.


