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Abstract

Mandelbrot and Frame studied the geometry of self-contracting symmetric binary trees in
which they stated that the height of such trees occurred at the branch tip of the path consisting
of branches that alternate left and right. Taylor proved that this happens for both self-avoiding
as well as self-contacting symmetric binary trees (if we ignore the height of the trunk and just
consider the branch tips). In his commentary on Mandelbrot’s and Frame’s work, West gave
an example of a self-overlapping tree in which this alternating left-right path does not give the
highest point of the tree, and said that more analysis was needed. In this paper we show how
such examples can be constructed for all but a countable number of angles. We also investigate
the conditions for when the sides and bottom of a self-overlapping symmetric binary tree differ
from what happens with self-avoiding and self-contacting trees.

1 Introduction

To construct a symmetric binary tree, choose an angle θ with 0◦ < θ < 180◦ and a scaling factor r
with 0 < r < 1. Start with a vertical line segment (the trunk) of length 1. The trunk splits into
two branches at the top that each form an angle of θ with the linear extension of the trunk, one
to the left and one to the right. Each branch has length r. Each of these two branches forms the
trunk of a subtree that splits into two more branches following the same rule. The angle is again
θ and the length of each of the four new branches is r2, as shown in Figure 1. The symmetric

Figure 1: Two iterations

binary tree is obtained by continuing to add more branches ad infinitum, using the angle θ and
scaling factor r for each set of new branch segments. The limit points of the branches in a binary
tree are called the branch tips. Figure 2 illustrates examples of three symmetric binary trees. If
the scaling factor r is too small, the branches of the tree will be self-avoiding, while if r is too
large the branches will overlap. Mandelbrot and Frame [1,2] showed that for each angle θ, there
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(a) θ = 60◦, r = 0.58 (b) θ = 60◦, r = 0.61803 (c) θ = 60◦, r = 0.65

Figure 2: Symmetric binary trees

is a unique scaling factor rsc such that the symmetric binary tree with that θ and r = rsc will be
self-contacting, that is, branches may touch at a single point but may not cross. In this case, the
branch tips of some left-side branches may coincide with branch tips of some right-side branches,
but no branch tip will coincide with any non-tip point of the tree. In Figure 2, the three trees are
self-avoiding, self-contacting, and self-overlapping, respectively.

The paths of a symmetric binary tree can be addressed by finite strings of the letters L and R,
with L corresponding to branching to the left and R corresponding to branching to the right. The
branch tips are obtained as infinite sequences of L and R. For example, the sequence (RL)∞ =
RLRLRL . . . would be a path alternating right and left branches. In Figure 3, notice the symmetry

Figure 3: Branch tip labeling

with the address (LR)∞. The address R∞ corresponds to an infinite spiral of right branches.
We will take the base of the tree to be at the origin and the initial vertical trunk to be of

length 1. By the “top” of the tree we will mean the top of the branch tips, that is, the largest
y-coordinate of the branch tips. The “bottom” of the tree will mean the bottom of the branch
tips, that is, the smallest y-coordinate of the branch tips. The “right side” of the tree will be the
largest x-coordinate of the branch tips (and by symmetry, the left side will be the negative of this
x-coordinate.) The trunk is not considered in determining the top or bottom of the tree. Figure 4
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illustrates these dimensions for a tree with θ = 35◦ and r = 0.6, along with some addresses of
branch tips at which the extreme y and x-coordinates are obtained.

Figure 4: θ = 35◦, r = 0.6 (top = 2.6539, side = 1.51964, bottom = 1.15588)

Details for many of the results and computations that follow may be found at the website
https://larryriddle.agnesscott.org/ifs/pythagorean/symbinarytreeShape.htm.

2 Top of the Tree

To get to the top of the tree, we want to go vertically as much as possible for each new branch in
the construction of the tree. This suggests that we want to alternate left and right branches and
follow the path (LR)∞, or by symmetry, the path (RL)∞. Mandelbrot and Frame first discussed
the height of a self-contacting tree in [1]. Taylor [4] proved that for self-contacting and self-avoiding
trees, the y-coordinate of the point with address (LR)∞ does indeed give the top of the tree. There
are, in fact, many branch tips with the same y-coordinate as that for the (LR)∞ path, such as
the branch tip for (RL)∞. Consider the finite path with address Pn = T1T2T3 . . . Tn where Ti is
either the pair LR or the pair RL. Then the y-coordinates for the branch tips of Pn and (LR)n

will be the same, as can be shown by induction on n. Now let n go to infinity to see that the
branch tip for the path limn→∞ Pn will have the same y-coordinate as that for (LR)∞. There are
infinitely many such paths. This is why many symmetric binary trees appear to have a “flat” top
as in Figures 2,3, and 4, even when the trees are self-overlapping. As observed, however, by Don
West [4], the branch tip for (LR)∞ or (RL)∞ may not always have the largest y-coordinate. We
will show below that for every θ that is not of the form 360◦

k for some integer k, there will be a
critical value rT such that if r > rT , then there is a branch tip for that symmetric binary tree with
a larger y-coordinate. These scaling factors will be fairly large, however, and the resulting binary
trees will have massively overlapping branches.

Let α be the complex number α = eθi = cos θ + i sin θ. We can represent the trunk of the
tree by the complex number i (which we can also think of geometrically as a vector). Recall that
multiplying a vector by r will scale the vector by r, that multiplying the vector by α corresponds
to a counterclockwise rotation by θ, and multiplying by α−1 corresponds to a clockwise rotation
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by θ. We also have αn = enθi = cos (nθ) + i sin (nθ) and α−n = e−nθi = cos (nθ)− i sin (nθ) for all
integers n.

To find the branch tip of the path (LR)∞ in terms of complex numbers, we add the vectors
corresponding to the branches. These vectors are obtained by multiplying the branch vectors by α
and α−1 in an alternating fashion while also scaling by r. The branch tip for this path is therefore
located at the point (x, y) corresponding to the complex number

i+ irα+ir2 + ir3α+ ir4 + ir5α+ ir6 + ir7α+ . . .

= i
(
1 + r2 + r4 + . . .

)
+ irα

(
1 + r2 + r4 + . . .

)
= i

1

1− r2
+ irα

1

1− r2

= i
1 + rα

1− r2
= iz.

For this path we thus have

y = Im(iz) = Re(z) =
1 + r cos (θ)

1− r2
.

Let k be the smallest integer such that kθ ≥ 360◦. Consider the branch path that starts Rk.
This path starts at the top of the trunk and goes clockwise until the last branch regains or passes
the upward vertical direction. Now form the rest of the branches by alternating left and right. This
yields the branch tip Rk(LR)∞. Figure 5 shows the first 14 branches when θ = 70◦ and k = 6. The

Figure 5: R6(LR)8, θ = 70◦
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branch tip for Rk(LR)∞ corresponds to the complex number

(i+ irα−1 + ir2α−2 + . . .+ irkα−k) + irkα−k ·
(
rα+ r2 + r3α+ r4 + . . .

)

= i

(
k∑

n=0

rnα−n + rkα−k ·
(

ra

1− r2
+

r2

1− r2

))

= i

(
k∑

n=0

rnα−n +
rk+1α−(k−1) + rk+2α−k

1− r2

)
= iz.

The y-coordinate of this branch tip is Im(iz) = Re(z), or

k∑
n=0

rn cos(nθ) +
rk+1 cos((k − 1)θ) + rk+2 cos(kθ)

1− r2
.

2.1 Example

For a given θ, we are interested in knowing when the branch tip for Rk(LR)∞ has a greater y-
coordinate than the branch tip for (LR)∞. For example, if θ = 150◦ and r = 0.8, then Figure 6
shows the corresponding symmetric binary tree and the branch tips for these two specific paths
(here k = 3). The black path for R3(LR)∞ has a branch tip with y-coordinate 1.19607 while the

Figure 6: θ = 150◦, r = 0.8

green path for (LR)∞ leads to a branch tip with y-coordinate only at 0.85328. You can get a sense
of why this might happen in this example since the green path has a mostly horizontal direction
while the black path is more vertical. The value of r is large enough that the black path will grow
sufficiently upward to eventually extend above the end of the green path. The branch tip for the
R3(LR)∞ path corresponds to the top of this tree. Also notice in Figure 6 that the other “peaks”
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along the boundary are extensions of R3(LR)∞ using initial branches of the form (RL)m. The tree
looks ”filled-in” because the branches greatly overlap.

2.2 General Case

Let yk be the y-coordinate of the Rk(LR)∞ branch tip and let y0 be the y-coordinate of the (LR)∞

branch tip. For a fixed θ, these coordinates depend on the value of r. Let fθ(r) = yk − y0 be the
difference between the y-coordinates of the two branch tips, so

fθ(r) =
k∑

n=0

rn cos(nθ) +
rk+1 cos((k − 1)θ) + rk+2 cos(kθ)− 1− r cos(θ)

1− r2
.

If fθ(r) is negative then yk is less than y0, and if fθ(r) is positive then yk is greater than y0. We
consider two different cases depending on the value of θ.

2.2.1 Case 1: θ =
360◦

k
where k is an integer

Note that k ≥ 3 since θ < 180◦, and that θ < 1◦ for all k > 360. The largest possible angle is 120◦

(for k = 3).
For this special case we have kθ = 360◦ and therefore the last branch of Rk is vertical, but of

length rk. From this point on, the branches of Rk(LR)∞ alternate in the same pattern that the
(LR)∞ branches did from the beginning, but can never catch up, and thus yk will be less than y0.
Figure 7 shows what happens for θ = 120◦ with r = 0.9. The red path will have y0 = 2.89474 and
the black path will have y3 = 2.25526.

Figure 7: θ = 120◦, r = 0.9

Why does this happen for these special values of θ? Because kθ = 360◦, we have cos(kθ) =
cos(360◦) = 1 and cos((k − 1)θ) = cos(360◦ − θ) = cos(θ). Therefore

fθ(r) =

k∑
n=0

rn cos(nθ) +
rk+1 cos(θ) + rk+2 − 1− r cos(θ)

1− r2
.

When r is small, the function fθ(r) will behave like the quadratic function (cos(2θ)− 1) r2.
Since 0◦ < θ < 180◦, the coefficient of r2 in the quadratic will be negative. Therefore the graph
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of fθ(r) starts at (0,0) and initially begins decreasing in a concave down fashion as r increases.
Moreover, with the help of L’Hopital’s rule, we can determine that

lim
r→1−

fθ(r) =

k∑
n=0

cos(nθ) + lim
r→1−

(k + 1)rk cos(θ) + (k + 2)rk+1 − cos(θ)

−2r

= 1 +
(k + 1) cos(θ) + k + 2− cos(θ)

−2
= −k

2
(1 + cos(θ)).

Therefore limr→1− fθ(r) < 0 suggesting that fθ(r) remains negative as r goes from 0 to 1. Examining
the graphs of fθ(r) for each k from 3 to 360 shows that this is indeed the case for the corresponding
θ values between 1◦ and 120◦. This implies that y0 is always greater than yk for all r between 0
and 1 for these special values of θ.

2.2.2 Case 2: θ 6= 360◦

n
for any integer n

The smallest integer k such that kθ > 360◦ is k =
⌈
360◦

θ

⌉
, where dxe is the ceiling function, i.e. the

smallest integer greater than or equal to x. As in case 1, the value of k can be any integer greater
than or equal to 3.

As before, the graph of fθ(r) starts at (0,0) and initially begins decreasing in a concave down
fashion as r increases. This time, however, we have limr→1− fθ(r) = +∞. To see why, we just need
to verify that the numerator of the fraction in the expression for fθ(r) is positive when r = 1 since
the denominator is positive and goes to 0 as r approaches 1 from the left. So we need to verify that

N(θ) = cos((k − 1)θ) + cos(kθ)− 1− cos(θ) > 0 when
360◦

k
< θ <

360◦

k − 1

where k = d360◦θ e. For example, for 120◦ < θ < 180◦ with k = 3,

N(θ) = cos(2θ) + cos(3θ)− 1− cos(θ) = −2 sin2(θ)(2 cos(θ) + 1) > 0.

Note that N(120◦) = N(180◦) = 0, and that in general, N(360◦/k) = N(360◦/(k − 1) = 0.
The graph of N(θ) is shown in Figure 8, indicating that N(θ) is positive for all θ except for

those of the form 360◦

k (which pile up very quickly as k gets large and θ approaches 0.)

Figure 8: Graph of N(θ)

Because fθ(r) is negative for small r and limr→1− fθ(r) = +∞, there must be some some rT
between 0 and 1 where fθ(rT ) = 0. Figure 9 shows the graphs of fθ(r) for θ = 65◦ and θ = 135◦.
The shapes of these graphs are typical for all values of θ in case 2. The equation fθ(r) = 0 can be
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(a) θ = 65◦, rT = 0.96984 (b) θ = 135◦, rT = 1√
2

= 0.70711

Figure 9: Typical behavior for fθ(r) graphs in Case 2

(a) 0◦ < θ < 180◦ (b) 30◦ < θ < 90◦

Figure 10: Graphs of rT as function of θ

solved numerically to find the solution rT . Figure 10 shows the graph of rT as a function of θ for
0◦ < θ < 180◦ and a close up of this graph just on the range 30◦ < θ < 90◦.

Several observations can be made. First, the equation fθ(r) = 0 has no solution for r > 0
when θ is of the form 360◦

k for some integer k. These are the special angles in case 1. Therefore
rT does not exist at these special values of θ. However, the graphs show that rT approaches 1 as θ
approaches one of these special angles.

Second, for θ < 90◦, the value of the critical scaling factor rT is greater than 0.94, so for
all practical purposes the top of a reasonable symmetric binary tree for this range of θ will be
determined by the (LR)∞ path. Any choice of r > 0.94 will produce a tree that has a massive
overlap of branches.

Third, the situation is a bit different for θ > 90◦, and in particular for θ > 120◦. On this latter
interval, the value of rT converges to 0.5 as θ approaches 180◦. We can, in fact, solve fθ(r) = 0
explicitly for r for those values of θ in these two intervals to get

90◦ < θ < 120◦ ⇒ rT = −
cos(θ) +

√
−3 cos2 (θ) + 1

4 cos2 (θ)− 1

120◦ < θ < 180◦ ⇒ rT = − 1

2 cos(θ)

Finally, it is interesting to note that for θ > 135◦ the critical scaling factor rT is the same value
as rsc for which the binary tree of angle θ is self-contacting. Figure 11 shows a comparison of the
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two graphs of rT versus rsc. For rsc < r < rT , the binary tree will have overlapping branches, but
the top of the branch tips will still correspond to the (LR)∞ path.

Figure 11: rT versus rsc

3 Bottom of the Tree

As with the top of the tree, we take the “bottom” of the tree to be the bottom branch tips, that is,
the smallest y-coordinate of the branch tips. For most trees, the bottom of the tree will correspond
to the y-coordinate of the branch tip of the path Rk(LR)∞, where k is now the smallest integer such
that kθ ≥ 180◦. This path bends right until it first achieves or crosses the downward vertical, then
alternates left and right. See, for example, Figure 4. Just as in the computation in the previous
section, the branch tip for the Rk(LR)∞ path will have y-coordinate given by

k∑
n=0

rn cos(nθ) +
rk+1 cos((k − 1)θ) + rk+2 cos(kθ)

1− r2
.

But as with the top of the tree, however, the branch tip for Rk(LR)∞, with k the smallest integer
satisfying kθ ≥ 180◦, will not always have the minimum y-coordinate. For many angles, if r is
sufficiently large, the path Rm(LR)∞, where m is the smallest integer such that mθ ≥ 540◦, will
have a smaller y-coordinate. Since 540◦ = 180◦ + 360◦, this path takes another complete set of
right turns until it passes the downward vertical for a second time. For example, this happens for
θ = 160◦ and r = 0.8 as illustrated in Figure 12 (here k = 2 and m = 4). The R2(LR)∞ path has
a branch tip with y = 0.27365 while the black path R4(LR)∞ has a branch tip with y = 0.22498.

Let fθ(r) = ym − yk be the difference between the y-coordinates of the corresponding branch
tips for Rm(LR)∞ and Rk(LR)∞. Then

fθ(r) =
m∑

n=k+1

rn cos(nθ)+
rm+1 cos((m− 1)θ) + rm+2 cos(mθ)− rk+1 cos((k − 1)θ)− rk+2 cos(kθ)

1− r2
.

If fθ(r) is positive then yk is less than ym and if fθ(r) is negative then yk is greater than ym.
Note that fθ(0) = 0. For r close to 0, it can be shown that the graph of fθ(r) will behave either

like −2 sin(θ) sin(kθ)rk+1 if kθ > 180◦, or (− cos(2θ) + 1)rk+2 if kθ = 180◦. Suppose kθ > 180◦.
Since θ < 180◦ and 180◦ < kθ < 360◦, we have sin(θ) > 0 and sin(kθ) < 0, and so the coefficient of
rk+1 in the first case will be positive. In the second case the coefficient of rk+2 will also be positive.
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Figure 12: θ = 160◦, r = 0.8

(a) lim
r→1−

fθ(r) = Aθ > 0 (b) lim
r→1−

fθ(r) = +∞ (c) lim
r→1−

fθ(r) = −∞

Figure 13: (a) θ = 60◦, (b) θ = 135◦, (c) θ = 146◦

Thus in either case the graph of fθ(r) will initially begin increasing in a concave up fashion as r
increases, and thus fθ(r) will be positive for r close to 0.

Example 13 shows examples of the three things that can happen with the graph of fθ(r) for
0 < r < 1. Which behavior occurs depends on the sign of the numerator of the fraction in the
expression for fθ(r) when r = 1 since the dominator is positive and goes to 0 as r approaches 1
from the left. So we need to determine the sign of

N(θ) = cos((m− 1)θ) + cos(mθ)− cos((k − 1)θ)− cos(kθ)

where k = d180θ e and m = d540θ e, in particular whether N(θ) is 0, positive, or negative (correspond-
ing to graphs (a), (b), and (c), respectively, in Figure 13). The graph in Figure 14 shows that N(θ)
alternates between intervals where it is positive or zero and intervals where it is negative or zero
(with those intervals getting smaller and alternating more rapidly as θ approaches 0.)

The places where the graph has a sharp corner are where θ = 540◦

p for an integer p ≥ 4. The

zeros of N(θ) occur at θ = 720◦

p for all integers p ≥ 4. Starting at the right end of the graph and
going in decreasing order, the first four zeros are at 180◦, 144◦, 120◦, and 102.85714◦.
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Figure 14: N(θ) for 0◦ < θ < 180◦

If θ is a zero of N(θ), then limr→1− fθ(r) exists and is positive. Where N(θ) is positive we have
limr→1− fθ(r) = +∞. For these values of θ, therefore, fθ(r) > 0 for all 0 < r < 1, and hence yk
will be less than ym.

The intervals where N(θ) is negative are of the form

720◦

4n+ 5
< θ <

720◦

4n+ 4
and

720◦

4n+ 4
< θ <

720◦

4n+ 3

for n = 0, 1, 2, . . .. (For n = 0, only the first interval is used. This gives 144◦ < θ < 180◦.) On
these intervals, we have fθ(r) positive for small r and limr→1− fθ(r) = −∞, so there must be some
rB between 0 and 1 where fθ(rB) = 0.

The equation fθ(r) = 0 can be solved numerically to find the solution rB. This equation will
also have a solution on the intervals where N(θ) is positive, but for those values of θ, rB will
be greater than 1. Figure 15 shows the graph of rB for 0◦ < θ < 180◦, and a close up of this
graph just on the range 30◦ < θ < 102.85714◦(= 720◦

7 ). The intervals where N(θ) < 0 correspond

(a) 0◦ < θ < 180◦ (b) 30◦ < θ < 102.85714◦

Figure 15: Graphs of rB

to the intervals in these graphs where rB < 1. On these intervals, the bottom of the symmetric
binary tree will be less than yk for rB < r < 1. Notice, however, that when θ < 720◦

7 , the value
of the critical scaling factor rB is greater than 0.95 so that for all practical purposes the bottom
of a reasonable symmetric binary tree will be determined by the Rk(LR)∞ path. Any choice of
r > 0.95 will produce a tree that has a massive overlap of branches. Only on the interval θ > 144◦
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is there an opportunity for rB to be small enough that one can generate an interesting tree (such
as in Figure 12). We actually have

rB =
2 cos(θ)

1− 4 cos2(θ)

for θ > 144◦ so rB converges to 2
3 as θ approaches 180◦.

4 Side of the Tree

Now we want the branch tip that is farthest to the right. Let k be the smallest integer such that
kθ ≥ 90◦. In her thesis, Taylor [4] proved that the path we seek is Rk(LR)∞ for self-avoiding and
self-contactng trees. This path starts off bending to the right until it first attains or passes a right
angle from the initial vertical direction, then alternates left and right branches. The x-coordinate
for the branch tip for this path will be

k∑
n=1

rn sin(nθ) +
rk+1 sin((k − 1)θ) + rk+2 sin(kθ)

1− r2
.

By the symmetry of the binary tree, the x-coordinate of the branch tip farthest to the left will be the
negative of this value. When θ ≥ 90◦, the largest x-coordinate for a self-avoiding or self-contacting
tree reduces to

xmax =
r sin(θ)

1− r2
.

When θ > 90◦, then k = 1 and the path leading to the right side of the tree is R(LR)∞ = (RL)∞,
which is the same path whose branch tip is usually at the top of the tree. This will happen for
all trees with θ > 90◦ and r ≤ rsc. Moreover, in this case the bottom tip point will be for the
path R2(LR)∞ = R(RL)∞. Thus the side and bottom tip points correspond to the “corner points”
for the scaled subtree whose trunk is the first right branch. Figure 16 shows two examples with
θ = 110◦. The left tree has r < rsc = 0.61494, and the right tree has r > rsc but also exhibits this
behavior.

(a) r = 0.60 (self-avoiding) (b) r = 0.71 (self-overlapping)

Figure 16: θ = 110◦

As with the bottom branch tips, however, there are some combinations of angles and scal-
ing factors for which the tree’s side will extend past the branch tip described above. The path
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Rm(LR)∞, where m is the smallest integer such that mθ ≥ 450◦, may have a larger x-coordinate.
Since 450◦ = 90◦ + 360◦, this path takes another complete set of right turns until it passes the
horizontal for the second time. For example, this happens for θ = 100◦ and r = 0.95 as illustrated
in Figure 17 (here k = 1 and m = 5). The red path R(LR)∞ has a branch tip with x = 9.59556
while the black path R5(LR)∞ has a branch tip with x = 10.35548.

Figure 17: θ = 100◦, r = 0.95 (red: R(LR)∞, black: R5(LR)∞)

The details for which intervals of θ and values of r the x-coordinate of the branch tip for
Rm(LR)∞ is greater than that for the branch tip for Rk(LR)∞ are similar to those for the bottom
of the tree and can be found at Riddle [3]. When θ < 72◦, the value of the critical scaling factor
for when this happens is greater than 0.99. The other possible intervals are 72◦ < θ < 90◦,
90◦ < θ < 108◦, and 120◦ < θ < 135◦. But even on these three intervals, the critical r value is
greater than 0.92 and any such tree would have a massive overlap of branches. So for all practical
purposes the right side of a reasonable symmetric binary tree will be determined by the Rk(LR)∞

path and will have maximum x-coordinate given by the formula above.
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