Spectral Theory

Robert Bartle University of Illinois

Spring 1980

Notes by Larry Riddle

Spectral Theory (1/21)

Robert Bartle, University of Illinois Notes by Larry Riddle

- I. General Spectral Theory in a B- Space Riesz-Dunford opr Cole.
- II. Compact and Riesz opr
- III. Spectral operator (- Dunford)
- IV. Decomposable Opr (Cologoara Foras)

Ch. I - General Spectra Thy in B- Spaces

* complex B-Space, B(*) bounded linear opes on *.

- 5.1.1 Defn Topologies on B(X, 7)
 - (a) The uniform (or norm) topology: Induced by T +> 11T11
 - (6) The strong opr togology: 0-nhds of the form $N(X_1, \dots X_n) := \S T : \|TX_i\| \le 1 \S$ or $T_{\alpha} \xrightarrow{sot} T \Leftrightarrow T_{\alpha} \times \overrightarrow{\parallel} T \times \forall x \in \mathcal{X}$.
 - (c) The weak oper topology: 0-nhds of the

 Arm N(x, ..., xn, Y,*, ..., Y*):= {T: |Y**Tx; | = |}

or To wot To A Y*To X Y*TX YXEX, YY*E Ug*

~1.2 Theorem

Ha lin fonal on B(X, V) is cont. in the strong oper topology A H is cont. in the weak oper top

proof

See D.S.

5.1.3 Defn

Let X and Y be normed spaces and T a l_{10} .

Opr in B(X, Y). The <u>adjoint</u> (conjugate, dual) of T is the opr $T^* \in B(Y^*, X^*)$ defined by $(T^*Y^*)(X) = Y^*(T_X)$

Notation $x^*(x) = : \langle x, x^* \rangle$, so the above is

$$\langle x, \tau^* y^* \rangle = \langle \tau x, y^* \rangle$$

but WARNING

$$(\lambda T)^* = \lambda T^*$$
 not $\lambda^* T^*$ as in the

Hilbert Space setting.

Spectral Theory (1/23)

5.1.4 Theorem

The map $T \mapsto T^*$ is an isometric isomorphism of $B(X^{U_j})$ into $B(Y_j^*, X_j^*)$.

proof

clearly isomorphism.

=
$$\sup_{\|x^*\| \le l} \|y^*Tx\| = \sup_{\|x^*\| \le l} \|Tx\| = \|T\|$$

N

7.1.5 Theorem

Let X and Y and B be normed In. spaces. Then

(a) $T \in B(X,Y)$ $u \in B(Y,B) = u \in B(X,B)$ and $(uT)^* = T^*u^*$

- (b) $T^{**} \in \mathcal{B}(X^{**}, Y^{**})$ is an extension of $T \in \mathcal{B}(X, Y)$ In the sense that $T^{**}J_{X} = J_{Y}T$. (1, cononical map)
- (c) If X and Y are B-Spaces, then T has a bdd

 Inverse to T* has a bdd inverse in which cose $(T^{-1})^* = (T^*)^{-1}$

proof

- $(6) \left(T^{**}J_{x}x\right)\gamma^{*} = J_{x}x\left(T^{*}\gamma^{*}\right) = \left(T^{*}\gamma^{*}\right)(x) = \gamma^{*}\left(Tx\right)$ $= \left(J_{y}T_{x}\right)(\gamma^{*})$
- (c) \equiv if $u=T^{-1}$, uT=I Tu=I then $T^*u^*=I^*=I$ and $u^*T^*=I^*=I$
- If T* hos a bild inv then T** does by =>

 T** 13 a lin isom of ** onto 25**, is 1-1

 and maps IX into a closed subspace of 25**.

() Coro

 $X = B - Space and T \in B(X)$ then $\rho(T) = \rho(T^*)$, $\sigma(T) = \sigma(T^*)$ and $R(X; T^*) = (R(X; T))^*$

5.1.6 Theorem

X and Uf B- Spaces. a /In Map T: X→ Uf

IS norm - norm conf ⇒ If Is ω-ω conf.

Proof ⇒ N = { y ∈ U : /y* y / ≤ 1, y* ∈ F} For $y * \in F$, $k \neq X^* = T^*Y^*$ and set $N_2 = \{ x \in X : | x^*X | \leq 1, x^* = T^*Y^*, y^* \in F \}$ Note $T(N_2) = N$,

So Y*T = X * => Y*T is cont. in the norm top.

OMT => T is norm-norm cont.

 \boxtimes

1/24 SPECTRAL THEORY

5.1.7 THEOREM: Let X, Y be B-opaces.

(a) let T∈ B(x,y). H S=T*, then S is w*-w* cont.

(b) H $S: Y^* \longrightarrow X^*$ is linear and $w^* - w^*$ cont., then $\exists T \in \mathcal{B}(X,Y) \text{ s.t. } S = T^*$

Proof (a) Suppose x = > x = w un x = Then

 $\forall x \in \mathcal{X}$ $Sy_{\alpha}^{*}(x) = T^{*}y_{\alpha}^{*}(x) = y_{\alpha}^{*}(Tx) \rightarrow y^{*}(Tx) = Sy_{\alpha}^{*}(x)$

and so Sya -> Sy w.

(b) Fix $x \in \mathcal{X}$. The map $y^* \mapsto (Sy^*)x$ is a ω^* -continuous linear functional on y^* . Hence $\exists y_x$ s.t.

 $y^* y_x = (Sy^*)x$

for all $y^* \in \mathcal{Y}^*$. Define $T: \mathcal{X} \longrightarrow \mathcal{Y}$ by $Tx := y_x$. T is linear

Claim: T is w-w continuous.

& Xa - x weakly then

 $y^* Tx_\alpha = (Sy^*)x_\alpha \rightarrow (Sy^*)x - y^* (Tx)$

Honce $Tx_d \to Tx$ weakly.

Therefore T is norm-norm continuous, i.e. $T \in \mathcal{B}(X, Y)$. Clearly $T^* = S$.

1

§5.2 Annihilators and Ranges

5.2.1. DEFINITION: (a) Let I be a normed lunar opace. of ACX

1 "annihilator of A"

(6) Let BC X* Thon

1 "pre annihilator of B"

Note: B1 = K-1 (KX n B+)

5.2.2. Lemma: det A = X, B = X*

- (a) At is a closed subspace of X*
- (b) By is a closed subspace of X
- (c) A = (A¹), in fact $\overline{ap}A = (A^{1})_{\perp}$

(d) $B \subseteq (B_L)^{\perp}$; im fact $B \cap B \subseteq (B_L)^{\perp}$

Proof (a) A^{\perp} is actually ω^* -closed. If $X_d^* \longrightarrow X^* \ \omega^*$, and $X_d^* \in A^{\perp}$, then

 $O = X_{4}^{\alpha}(x) \rightarrow X_{4}(x) \quad \forall x \in \mathcal{V}$

⇒ XN E AL

We nee $A = (A^{\perp})_{\perp} \Rightarrow \delta p A = (A^{\perp})_{\perp}$ We nee $A = (A^{\perp})_{\perp} \Rightarrow \delta p A = (A^{\perp})_{\perp}$ We nee $A = (A^{\perp})_{\perp} \Rightarrow \delta p A = (A^{\perp})_{\perp}$ When $\delta p A = \delta p A =$

 $X_0^*(X_0) = 1$ $X_0^*(\delta p(A)) = 0$

Then $X_0^* \in A^{\perp}$ but $X_0^*(x_0) \neq 0$, no $X_0 \notin (A^{\perp})_{\perp}$. Hence $\overline{p}(A) = (A^{\perp})_{\perp}$

0

5.23. THEOREM: (a) of M is a norm closed subspace of &, then M = (M+)_

M = (M_1) - (If & 15 reflexive we get equality)

5.2.4. THEOREM: Let X, y be normed linear space, T < B(X, y)

(a)
$$\mathcal{H}(T^*) = \mathcal{R}(T)^{\perp} = \mathcal{R}(T)^{\perp}$$

(c)
$$R(T) = X(T^*)_{\perp}$$

Proof (a) y = T(T*) (T*) (T*y*=0 (T*y*x=0) +xex

(b) Dame

1/29 SPECTRAL THEORY

Example: Not
$$X = Y = l_1$$
 and define
$$T(x_1, x_2, \dots) = (\frac{1}{1}x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots)$$
Then $\Upsilon(T) = \{0\} \Rightarrow \Upsilon(T)^{\perp} = X^* = l_{\infty}$. Note that

$$T^*(y_1,y_2,...)=\left(\frac{1}{1}y_1,\frac{1}{2}y_2,...\right)$$

Claim: $T^*(loo) = R(T^*)$ is separable in loo. But loo is not separable, and so $\overline{R(T^*)}$ is a proper subspace of loo. Hence

5.2.5. COROLLARY
$$R(T)$$
 dense $\Rightarrow T$ is 1-1 $R(T^*)$ dense $\Rightarrow T$ is 1-1

$$T^*y^*(x)=0 \ \forall x \Rightarrow y^*(T_X)=0 \ \forall x$$

$$\Rightarrow$$
 $y^*(R(T))=0 \Rightarrow y^*(Y)=0$

$$\Rightarrow \mathcal{J}(L) = (\mathcal{J}(L))^{T} = \{0\}$$

$$\Rightarrow \mathcal{J}(L) = (\mathcal{J}(L))^{T} = \{0\}$$

2

5.2.6. THEOREM TEB(X)

(a) $\sigma_p(T) \subset \sigma_p(T^*) \cup \sigma_r(T^*)$

(b) 00(1*) = 00(T) = 00(T*) v 0 (T*)

(c) $\sigma_r(T) = \sigma_p(T^*) = \sigma_p(T) \cup \sigma_r(T)$

(d) or (T*) < op (T) u oc (T)

(e) of X is reflexive $\sigma_c(T) = \sigma_c(T^*)$, $\sigma_r(T^*) = \sigma_p(T)$

Proof (a) $\lambda \in \sigma_p(T) \Rightarrow \eta(\lambda - T) \neq 0 \Rightarrow \Omega(\lambda - T^*) \subsetneq \mathcal{X}^*$ and so $\lambda \notin \sigma_c(T^*) \Rightarrow \lambda \in \sigma_p(T^*) \cup \sigma_v(T^*)$.

(b) $\lambda \in \sigma_c(T^*) \iff \begin{cases} \lambda - T^* & |-| \\ \lambda - T^* & \text{has dense proper range} \end{cases}$

 $\Rightarrow \begin{cases} R(\lambda - T) & \text{dense} \\ \Rightarrow \lambda \in \sigma_c(T) \end{cases}$

$$\lambda \in \mathcal{T}_{c}(T) \Leftrightarrow \begin{cases} \lambda - T & |-1| \\ \Re(\lambda - T) & \text{dense} \end{cases} \Rightarrow \begin{cases} ? \\ \lambda - T^{*} & |-1| \end{cases}$$

and so 1 = 0p (T*)

The nest of the proofs are similar.

0

Remark - of X is not reflexive, then $\sigma_c(\tau) \cap \sigma_r(\tau^*)$ can be non-empty. See last example, where $0 \in \sigma_c(\tau) \cap \sigma_r(\tau^*)$

5.2.7. THEOREM (BANACH) Let X, Y be Barach opences. of TEB(X, T) and R(T) is closed, then R(T*) is closed. Moreover,

$$\mathcal{R}(\perp) = \mathcal{L}(\perp_*)^{\top}$$
; $\mathcal{L}(\perp_*) = \mathcal{L}(\perp)^{\top}$

1.e.

$$R(T^*) = \{x^* \in \mathcal{X}^* : T_{X=0} \Rightarrow x^*_{X=0}\}$$

Proof. See D-S

5.28. THEOREM (BANACH) of R(T*) is closed, then R(T) is closed

Proof (hard) See D-S II 6.4

Roufman PAMS 17 (1966)

Yosida Functional Analysis (1965 ed.) p205

The ACD classification $T \in B(x, y)$

$$D = range$$
 is dense $D' = range$ not dense

$$\sigma_c = A'C'D$$

$$\sigma_{\Gamma} = A'D'$$

J.T. Joichi (1959)

(See next page)

A'c'o'							5/1/2		
A'c'D									r = cannot occur
A'CD'									if I is refloive
A'CD									(even if y=l2)
AC'D'								5/1	0
AC'D								1///	
ACO'		11///							
ACD									
T*/	ACD	ACD!	AC'D	AC'D'	R'CD	A'c D'	A'C'D	Ac'D'	
			7						

1/31 SPECTRAL THEORY

$$\lambda \in \sigma_{\alpha}(T)$$
 means $\exists ||x_n|| = ||s.t.(\lambda - T)x_n \rightarrow 0$
Lapproximate spectrum

$$\lambda \in \sigma_{\alpha}(T) \iff \exists m > 0 \text{ s.t. } ||(\lambda - T) \times || \ge m || \times || \forall x$$

$$\implies \mathcal{R}(\lambda - T) \text{ is closed}$$

$$\sigma_{p}(\tau) \cup \sigma_{c}(\tau) \subseteq \sigma_{a}(\tau)$$
 $\partial \sigma(\tau) \subseteq \sigma_{a}(\tau)$

σa(T) us closed but there is no obvious relationship between · σa(T) and σa(T*) (e.g. left shift operator)

det X_i, X_i be b-opaces, $T_i \in B(X_i)$. Let $X = X_i \oplus X_i$. Define

$$T(x_1,x_2) := (T_1X_1,T_2X_2)$$

Proof
$$\lambda \in \rho(T_1) \cap \rho(T_2)$$
. Define
$$A(x_1,x_2) := (R(\lambda,T)x_1, R(\lambda,T_2)x_2)$$

Then
$$A(\lambda-T)= \mathbb{I}=(\lambda-T)A$$
, and so $\lambda\in p(T)$. Hence $\sigma(T)=\sigma(T_1)\cup\sigma(T_2)$

Let $J\in p(T)$. We want to show that $\lambda\in p(T_1)$
 $(\lambda-T)(x_1,x_2)=((\lambda-T_1)x_1,(\lambda-T_2)x_2)$

Let $J_1:X_1\to X$ and $J_1:X_1\to X_1$ be given by $J_1(x_1,x_2):=(x_1,0)$
 $J_1(x_1):=(x_1,0)$
 $J_1(x_1,x_2):=x_1$

Then
$$\pi, J_1 = I_1$$
. Observe that
$$(\pi, R(\lambda, T)J_1)(\lambda - T_1)x_1 = \pi, R(\lambda, T)((\lambda - T_1)x_1, 0)$$

$$= \pi, R(\lambda, T)(\lambda - T)(x_1, 0)$$

$$= \pi, R(\lambda, T)(\lambda - T)(x_1, 0)$$

Since

$$\Pi_{1}(\lambda-T)(X_{1},X_{2}) = (\lambda-T_{1})X_{1}$$

$$= (\lambda-T_{1})\Pi_{1}(X_{1},X_{2})$$

we have

$$(\lambda - T_i)\pi_i R(\lambda_i T) J_i = T_i(\lambda - T) R(\lambda_i T) J_i$$

= T, J, = I,

Therefore $R(\lambda; T_i) = \pi_i R(\lambda; T) J_i$, so $\lambda \in \rho(T_i)$. Similarly, $\lambda \in \rho(T_i) \cap \rho(T_2)$, so $\rho(T) = \rho(T_i) \cap \rho(T_2)$. Therefore

0(T,) U 0 (T2) < 0(T)

then $S:=ATA^{-1}\in B(Y)$ and $A\in B(X,Y)$ is invertible,

$$\sigma(S) = \sigma(T)$$

$$R(\lambda; T) = AR(\lambda; T) A^{-1}$$

Jet Y1, Y2 reduce T

$$[y=y, \oplus y_2, Ty_i \leq y_i]$$

Then o(T) = o(Tly,)vo(Tly2)

Proof. Let T; = Tly; A A: y -> y, Dyz is

given by

$$A(y_1+y_2) = (y_1,y_2)$$

Hen A is an isomorphom. Morener,

团

closed

Let X he a B-opace, y < X subspace. Define

[x] y = x = x+y = coset = {x+y: y ∈ y}

$$[X_1+X_2] := [X_1+X_2]$$

$$\alpha[x] := [\alpha x]$$

||[x] || := Im{ | ||x+y|| : y e y } = dist (x, y)

Then we get a barach space $\frac{X}{y}$, $\varphi: X \mapsto [X]$ carrical quotient map. $||\varphi|| \leq 1$

1/1 SPECTRAL THEORY

5.2.12 THEOREM: Yet y be a closed subspace of a bamach

4: 3E*/y+ -> y*

defined by

is an isometric isomorphism.

5.2.13 THEOREM: The map 42: (2/y)* -> y defined

for every x & X is an isometric isomorphism.

85.3 ASCENT AND DESCENT

Let X he a vector space. T:X-y linear. Note

5.3.1. THEOREM:

(a)
$$N(T^n) \subset N(T^{n+1})$$
 $\forall n$

$$R(T^n) \supset R(T^{n+1}) \quad \forall n$$

(c) of
$$R(T^k) = R(T^{k+1})$$
 for some k, then $R(T^k) = R(T^n)$ for all $n \ge k$.

Proof (a) Trivial

(b) Suppose
$$\eta(T^k) = \eta(T^{k+1})$$
. If $\chi \in \eta(T^{k+2})$, then $T\chi \in \eta(T^{k+1}) = \eta(T^k) \Rightarrow T^k(T\chi) = 0 \Rightarrow \chi \in \eta(T^{k+1})$. Hence $\eta(T^{k+2}) = \eta(T^{k+1})$. Now use induction.

$$y = T^{k+1} \mu = T(T^k \mu) = T_X$$
, where $x \in R(T^k) = R(T^{k+1})$.
Hence $x = T_Z^{k+1}$, so $y = T(T^{k+1} z) = T^{k+2} z$. Hence $z \in R(T^{k+2})$.
Therefore $R(T^{k+1}) = R(T^{k+2})$. Now use induction.

1

5.3.2 DEFINITION: The ascent of T (a(T)) is the smallest k s.t. $\eta(T^k) = \eta(T^{k+1})$, $\alpha + \omega$ if no such k exists $R(T^k) = R(T^{k+1})$, $\alpha + \omega$ if no such k exists $R(T^k) = R(T^{k+1})$, $\alpha + \omega$ if no such k exists

Example: (5.3.3)

a)
$$T(x_1, x_2, \dots) = (x_2, x_3, \dots)$$

$$R(T^n) = X \forall n \Rightarrow d(T) = 0$$

$$S(x_1,x_2,\dots)=(0,x_1,x_2,\dots)$$

$$R(T^n) = \{(0,0,0,...,0,x_{n+1},x_{n+2},...)\} \Rightarrow R(T) = +\infty$$

5.3.4. LEMMA: of a(T) < 00 and d(T) = 0, then a(T) = 0

Proof. Suppose a(T)>0 and a(T)=0. Then T is not 1-1 but is onto. Let $x_1 \neq 0$ be such that $Tx_1=0$. $\exists x_2 \leq t$. Then $T^2x_2=Tx_1=0$. Since $x_1 \neq 0$, $x_2 \neq 0$. Hence $N(T^2) \neq N(T^1)$ since $x_2 \in N(T^2) \setminus N(T^1)$. Continue by industron to obtain seq. $(x_n) \leq t$.

$$x_n \in \eta(\tau^n) \setminus \eta(\tau^{n-1})$$

This shows that $a(T) > 0 \Rightarrow a(T) = + 10$ (if d(T) = 0)

5.3.5 THEOREM: of $a(\tau)$ and $a(\tau)$ are finite, then $a(\tau) = d(\tau) = p$. In this case

$$\mathcal{X} = \mathcal{R}(T^{\dagger}) \oplus \mathcal{N}(T^{\dagger})$$

Moreno, T/Q(TP) is 1-1 and onto.

Proof. See Dowson of Taylor

2/5 SPECTRAL THEORY

FUNCTIONAL CALCULUS

§ 6.1 Analytic Operational Calculus

Let $\mathfrak{X} \neq (0)$ be a complex B-space, $T \in B(\mathfrak{X})$.

5 which are analytic on some mother of $\sigma(\tau)$

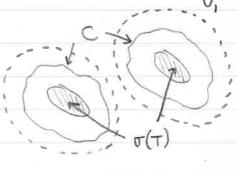
(The whole are not necessarily connected and may depend on the functional)

Obievely F(T) is a complex vector space.

Dong(T) containing of (T) in its interior, define

$$S(T) := \frac{1}{2\pi i} \int_{S(\lambda)} S(\lambda) R(\lambda; T) d\lambda$$

(Bochner integral). Note $S(T) \in B(X)$.



LEMMA: of A & B(X, Y), 5 & F(T), X* & X , X & X , X & Mon

a) AS (T) =
$$\frac{1}{2\pi i} \int_{C} S(\lambda) AR(\lambda;T) d\lambda$$

b)
$$5(\tau) \times = \frac{1}{2\pi i} \int_{\mathcal{E}} \frac{1}{5(\lambda)} \langle R(\lambda; \tau), \times \rangle d\lambda$$

c)
$$X^* \leq (T) X = \frac{1}{2\pi i} \int_{C} \frac{1}{2} \langle \chi \rangle \langle \chi^*, R(\lambda; T) \rangle \partial \lambda$$

Proof: Clear

COROLLARY: S(T) is independent of the choice of C

Proof: of C, is another scroe, then by the ordinary theory (Cauchy's)
(homotopic to C)

$$x^{*} \cdot \xi_{1}(T) x = \frac{1}{2\pi i} \int_{C_{1}} \xi(\lambda) \langle x^{*}, R(\lambda; T) x \rangle d\lambda$$

=
$$\frac{1}{2\pi i} \int S(\lambda) \langle x^*, R(\lambda; T) x \rangle d\lambda = x^* S(\tau) x$$

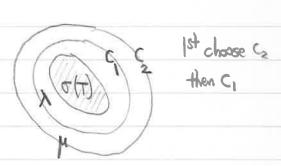
for every x*, x. Hence 5, (T) = 5(T).

(a)
$$\alpha + \beta = \exists (\tau)$$
 and $(\alpha + \beta = \alpha = (\tau) + \beta = (\tau)$

(c)
$$d = \sum_{n=0}^{\infty} c_n \lambda^n$$
 converges on a norther of $\sigma(\tau)$, then

$$f(T) = \sum_{n=0}^{\infty} c_n T^n \quad (m B(X))$$

$$5(T)g(T) = \left(\frac{1}{2\pi i}\right)^2 \int_{C_1} 5(i)R(i)di \int_{C_2} g(\mu)R(\mu)d\mu$$



$$= \left(\frac{1}{2\pi i}\right)^2 \int_{C_1}^{C_2} \frac{f(\lambda)g(\mu)R(\lambda)R(\mu)d\lambda d\mu}{c_1 c_2}$$

$$= \left(\frac{1}{2\pi i}\right)^{2} \int_{C_{1}}^{\infty} \frac{\xi(\lambda)g(\mu)}{\mu - \lambda} \frac{R(\lambda)}{\mu - \lambda} d\lambda d\mu$$

$$- \left(\frac{1}{2\pi i}\right)^{2} \int_{C_{2}}^{\infty} \frac{\xi(\lambda)g(\mu)}{\mu - \lambda} \frac{R(\mu)}{\mu - \lambda} d\lambda d\mu$$

$$C_{2}^{-1} = \frac{1}{2\pi i} \int_{C_{2}^{-1}}^{\infty} \frac{\xi(\lambda)g(\mu)}{\mu - \lambda} \frac{R(\mu)}{\mu - \lambda} d\lambda d\mu$$

=
$$\frac{1}{2\pi i} \int_{C_1} \frac{5(\lambda)g(\lambda)R(\lambda)d\lambda}{C_1} + 0$$

= $\frac{1}{2\pi i} \int_{C_1} \frac{5(\lambda)g(\lambda)R(\lambda)d\lambda}{C_1} d\lambda = 0$
 $\frac{1}{2\pi i} \int_{C_1} \frac{(5g)(\lambda)R(\lambda)d\lambda}{C_1} d\lambda$
 $\frac{1}{2\pi i} \int_{C_1} \frac{5(\lambda)g(\lambda)R(\lambda)d\lambda}{C_1} d\lambda = 0$

2/7 SPECTRAL THEORY

$$g(T)X = \frac{1}{2\pi i} \int_{C_2} g(\mu) R(\mu) \times d\mu$$

$$\Rightarrow x^*R(\lambda)g(\tau)x = \frac{1}{2\pi i} \int_{C_2} g(\mu) x^*R(\lambda)R(\mu) x d\mu$$

$$= \frac{1}{2\pi i} \int_{C_2} g(\mu) \frac{x^* R(\lambda) x}{\lambda - \mu} d\mu - \frac{1}{2\pi i} \int_{C_2} g(\mu) \frac{x^* R(\mu) x}{\lambda - \mu} d\mu$$

=
$$g(\lambda) \times R(\lambda) \times - \frac{1}{2\pi i} \int_{C_2} g(\mu) \frac{\chi_* R(\mu) \times}{\chi - \mu} d\mu$$

$$\Rightarrow \frac{1}{2\pi i} \left\{ \xi(\lambda) \chi^{*} R(\lambda) g(\tau) \chi d\lambda - \frac{1}{2\pi i} \right\} \xi(\lambda) g(\lambda) \chi^{*} R(\lambda) \chi d\lambda$$

$$-\left(\frac{1}{2\pi i}\right)^{2} \int_{C_{1}} S(\lambda) \left[\int_{C_{2}} g(\mu) \frac{\chi^{*}R(\mu)\chi}{\lambda - \mu} d\mu \right] d\lambda$$

$$= x^* \operatorname{Sg}(\tau) \times - (\frac{1}{2\pi i})^2 \int_{C_2} \frac{f(\lambda)}{f(\lambda)} \int_{C_1} g(\mu) \frac{x^* R(\mu) x}{\lambda - \mu} d\lambda d\mu$$

1 -M is analytice inside and on C,

But

$$x^* f(T)[g(T)x] = \frac{1}{a\pi i} \int_{C_1}^{C_2} f(\lambda) x^* R(\lambda)[g(T)x] d\lambda$$

Hence
$$f(T)g(T) = fg(T)$$
.

Here we want to show
$$5(\lambda) = \sum_{n=0}^{\infty} c_n \lambda^n$$
 converges on a nirkel of $\sigma(\tau)$

$$S(T) = \sum_{n=0}^{\infty} c_n T^n$$

First note that

$$R(\lambda) = \sum_{k=0}^{50} \frac{T^k}{\lambda^{k+1}} |\lambda| > r(T)$$

Let C = { | X | = r(T) + E }.

$$\lambda n R(\lambda) = \sum_{k=0}^{\infty} \frac{T^k}{\lambda^{k+1-n}}$$
 (converges unif. on compact sets)

$$\Rightarrow \frac{1}{2\pi i} \int_{C} \lambda^{n} R(\lambda) d\lambda = \frac{1}{2\pi i} \int_{C} \frac{1}{2\pi i} \int_{C} \frac{1}{2\pi i} \frac{Tk}{\sqrt{k+n}} d\lambda$$

Hence Itemse

$$S(T) = \frac{1}{2\pi i} \int_{C} S(\lambda) R(\lambda) d\lambda = \sum_{n=1}^{\infty} \int_{C} \lambda^{n} R(\lambda) d\lambda$$

and S(T) commutes with T, $R(\lambda,T)$ and with any operator $A \in B(X)$ which commutes with T.

Proof. At
$$A(\lambda-T) = (\lambda-T)A$$
, then $R(\lambda;T)A = AR(\lambda;T)$ for all $\lambda \in p(T)$

Note y le P(T)

$$R(\lambda_{i}^{s}T) = \frac{1}{2\pi i} \begin{cases} \frac{R(\xi_{i}T)}{\lambda - \xi} d\xi \end{cases}$$

for

$$\lambda - T = \frac{1}{2\pi i} \left\{ (\lambda - \xi) R(\xi) T \right\} d\xi$$

and some

$$(\lambda - T) \left[\frac{1}{2\pi i} \left\{ \frac{R(\xi; T)}{\lambda - \xi} d\xi \right] = \xi g(T) = 1 (T) = I$$

$$(\xi(\xi) = \lambda - \xi), \quad g(\xi) = \overline{\lambda - \xi}$$

$$S(T) = \lim_{n \to \infty} S_n(T)$$
 (in $B(X)$)

Proof. Clear that
$$5 \in \mathcal{F}(T)$$
, $30 \mathcal{F}(T)$ exist

$$|| \xi(\tau) - \xi_n(\tau)|| = || \frac{1}{2\pi i} \int_{\mathbb{R}^n} || \xi(\tau) - \xi_n(t)|| \frac{1}{2\pi i} \int_{\mathbb{R}^n} || \xi(\tau) - \xi_$$

$$\leq M \sup_{\lambda \in C} |S(\lambda) - S_n(\lambda)| \rightarrow 0$$

of
$$\xi \in \mathcal{F}(T)$$
, then $\sigma(\xi(\tau)) = \xi(\sigma(\tau))$

Proof. Let
$$\lambda \in \sigma(\tau)$$
 Claim: $\delta(\lambda) = \sigma(\delta(\tau))$. Define $q(\xi) = \begin{cases} \frac{5(\xi) - \delta(\lambda)}{\xi - \lambda} & \xi \neq 1 \end{cases}$

$$g(\xi) = \begin{cases} \frac{5(\xi) - 5(\lambda)}{\xi - \lambda} & \frac{5(\lambda)}{\xi} = \frac{5(\xi) - 5(\lambda)}{\xi} & \frac{5(\lambda)}{\xi} = \frac{5(\xi) - 5(\lambda)}{\xi} & \frac{5(\xi$$

43, 1. Hence

$$(T-\lambda)g(T) = g(T)-g(\lambda)$$

This is not invertible

Here this is not invertible

V

5(X) & or (5(T))

Hence
$$5(\sigma(\tau)) \subset \sigma(5(\tau))$$

Convendely, if $\mu \notin 5(\sigma(\tau))$ then

(for 3 = milkel of o(T)) belongs to F(T).

$$\Rightarrow (\mu - \xi(\tau)) h(\tau) = I$$

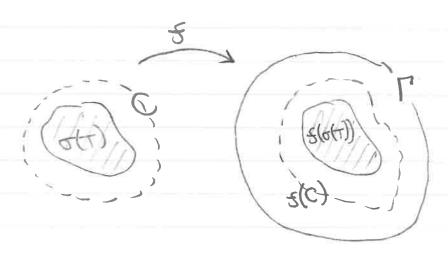
$$\Rightarrow \mu \in \rho(s(\tau)) \Rightarrow \mu \notin \sigma(s(\tau))$$

2/8 SPECTRAL THEORY

6.1.6. THEOREM: Let $f \in \mathcal{F}(T)$ and $g \in \mathcal{F}(f(T))$. Then $F := g \circ f \in \mathcal{F}(T)$ and

$$F(T) = q(s(T))$$

Then I serve C surrounding $\sigma(\tau)$ s.t.



A $\lambda \in \Gamma$, then $\lambda \in \varrho(5(T))$ and $\lambda - \xi(\xi) \neq 0$ for $\xi \in C$. Define

$$A(\lambda) := \frac{1}{2\pi i} \left\{ \frac{R(\xi;T)}{\lambda - \xi(\xi)} d\xi \right\}$$

Now

$$\lambda - \xi(T) = \frac{1}{2\pi i} \int (\lambda - \xi(\xi)) R(\xi; T) d\xi$$

and but

$$(\lambda I - \xi(\tau)) A(\lambda) = \frac{1}{2\pi i} \int_{C} R(\xi_{i}\tau) d\xi = I$$

$$\Rightarrow A(\lambda) = R(\lambda_{i}, \xi(\tau))$$

for her. Therefore

$$g(s(\tau)) = \frac{1}{2\pi i} \int g(\lambda) R(\lambda; s(\tau)) d\lambda$$

$$= \frac{1}{2\pi i} \int g(\lambda) \left\{ \frac{1}{2\pi i} \int_{C} \frac{R(s;\tau)}{\lambda - s(s)} ds \right\} d\lambda$$

$$x^* g(s(t)) x = \left(\frac{1}{2\pi i}\right)^2 \int_{\Gamma} g(\lambda) \left(\int_{C} \frac{x^* R(s;T) \times ds}{\lambda - s(s)} ds\right) d\lambda$$

$$= \left(\frac{1}{2\pi i}\right)^2 \int_{C} \left(\int_{A-S(\frac{1}{8})} \frac{g(\lambda)}{\lambda - S(\frac{1}{8})} d\lambda\right) x^* R(\frac{1}{8};T) x d\frac{1}{8}$$

$$= \frac{1}{2\pi i} \begin{cases} g(s(s)) \times R(s;T) \times ds \\ F(s) \end{cases}$$

Components of the spectrum

det o be a clopen subset of o(T). Let

Thon $\xi_{\sigma} \in \mathcal{F}(\tau)$. Note that $\xi_{\sigma}^2 = \xi_{\sigma}$. Let

$$E(\sigma) := S_{\sigma}(T) = \frac{1}{2\pi i} \int_{C} R(\lambda; T) d\lambda \qquad \sigma \in \operatorname{Int}_{C}, \ \sigma(\tau) | \sigma$$

Then $E^2(\sigma) = E(\sigma)$ (If $\sigma = \sigma(\tau)$, then $E(\sigma) = I$)

the Boolean algebra of clopen subsets of $\sigma(\tau)$. Then the map $\sigma \to E(\sigma)$ is an isomorphism of Σ_0 into a boolean algebra of projections in B(X), i.e.

(2)
$$E(\sigma(T)) = I$$

(3)
$$E(\sigma_1 \cap \sigma_2) = E(\sigma_1) E(\sigma_2)$$

$$E(\sigma_1 \cup \sigma_2) = E(\sigma_1) + E(\sigma_2) - E(\sigma_1) E(\sigma_2)$$

(5)
$$E(\sigma(\tau)/\sigma) = I - E(\sigma)$$

Moreover, $TE(\sigma) = E(\sigma)T$ and $\sigma(T|E(\sigma)X) = \sigma$.

Proof (1)-(6) easy consequence of definition of
$$\mathcal{F}_{\sigma}$$
. Let $\mathcal{X}_{i}:=\mathbb{E}(\sigma)\mathcal{X}_{i}$, $\mathcal{X}_{2}=(\mathbb{I}-\mathbb{E}(\sigma))\mathcal{X}_{i}$. Then

and T is reduced by (£, £2). By theorem 5.2.11

$$(*) \qquad \sigma(\tau) = \sigma(\tau(X_1) \cup \sigma(\tau(X_2))$$

d 1 € 0 let

for 3 in a who of or that does not contain I

for 3 in a Norther of or (T) - or =: o'. Then ha & F(T) and

$$\Rightarrow h_{\lambda}(T)(\lambda I - T) = E(\sigma)$$

Hence $(\lambda I - T) \mid \mathcal{X}$, is unjoitable and has invoice $h_{\lambda}(T) \mid \mathcal{X}_{1}$. Therefore $\lambda \notin \sigma(T \mid \mathcal{X}_{1})$, and so $\sigma(T \mid \mathcal{X}_{1}) < \sigma$. Olor $\sigma(T \mid \mathcal{X}_{2}) < \sigma'$. Hence from (*)

$$\sigma(\tau) = \sigma(\tau|X_1) \cup \sigma(\tau|X_2)$$

$$= \sigma_1 \cup \sigma_2 = \sigma(\tau)$$

$$\Rightarrow \sigma(T|X_1) = \sigma_1$$

$$\sigma(T|X_2) = \sigma_2$$

Hence this map $\sigma \mapsto E(\sigma)$ is 1-1.

2/12 SPECTRAL THEORY

Isolated Singularities of R(1;T)

Jet $\lambda = 0$ be the only point in $\sigma(\tau)$. $\sigma(\tau) = 903$ iff T is quasinilpotent (NTOHIN $\rightarrow 0$). Here

$$R(\lambda;T) = \sum_{n=0}^{\infty} \frac{T^n}{\lambda^{n+1}}$$

for $\lambda \neq 0$. Hence the residue of $R(\lambda;T)$ is I

6.1.8. THEOREM of $\sigma(\tau) = 908$, then T is supportent of index (= height) ≤ n if and only if $\exists M,8>0$ s.t.

(*)
$$\|\lambda^n R(\lambda;T)\| \leq M \left(0 < |\lambda| < \delta\right)$$

Proof. Suppose
$$T^{n-1} \neq 0$$
 but $T^n = 0$. Then
$$R(\lambda; T) = \frac{1}{\lambda} + \frac{1}{\lambda^2} + \dots + \frac{1}{\lambda^n}$$

$$\Rightarrow \lambda^n R(\lambda; T) = \lambda^{n-1} I + \dots + T^{n-1}$$

$$\Rightarrow || \lambda^n R(\lambda; T) || \leq M$$

New suppose (x) lolds. Then

$$T^{n} = \frac{1}{2\pi i} \int_{|\lambda|=\delta}^{\infty} \lambda^{n} R(\lambda;T) d\lambda$$

(for all 8 sufficiently small). Hence T" = 0.

det 1.9 THEOREM: Let 1=0 be an worlated point of o(T).

$$E = \frac{1}{2\pi i} \int_{|\lambda|=8} R(\lambda;T) d\lambda$$

a) We can write $R(\lambda;T) = R^{+}(\lambda) + R^{-}(\lambda)$ ($\lambda \in p(T)$)

 $R^-(\lambda) := ER(\lambda;T)$ and has an analytic extension to $|\lambda| \neq 0$ $R^+(\lambda) := (I-E)R(\lambda;T)$ and has an analytic extension to $|\lambda| < 5$

b) Moreover,
$$\lambda = 0$$
 is a pole of $R(\lambda;T)$ iff

$$\|\lambda^{n}R(\lambda;T)\| \leq M$$
 (0<|\lambda| < \delta\)
$$\|\lambda^{n-1}R(\lambda;T)\| \text{ not both on 0<|\lambda| < \delta}$$

$$R(\lambda;T)x_0 = \left(\frac{I}{\lambda} + \frac{T}{\lambda^2} + \ldots + \frac{T^{k-1}}{\lambda^k}\right)x_0$$

Notemer Exo=xo.

Proof. E is a projection, commutes with T and $R(\lambda;T)$.

Let $T_i = T \mid E \times \emptyset$, so T_i is quasi-nulpotent in $B(X_i)$, $X_i = E \times \emptyset$. Let $T_2 := T \mid (I - E) \times \emptyset$. Then $\sigma(T_2) = \sigma(T) - \{0\}$.

$$R(\lambda;T) = E R(\lambda;T) + (I-E) R(\lambda;T)$$

$$= R^{-}(\lambda) + R^{+}(\lambda)$$

Claim: T," E = T"E

Clearly T, E = TE = ETE (since E commutes with T)

Honce

Now use induction.

Fo 121 > 1/11

$$R(\lambda;T) = \sum_{\lambda} \frac{T''}{\lambda^{n+1}}$$

$$K_{-}(\gamma) = \sum \frac{\gamma_{n+1}}{L_n E}$$

Since T is quasi-nelpotent,

$$R(\lambda; \tau_1) = \sum_{\lambda} \frac{\tau_1^n}{\lambda^{m+1}} \quad (all \ \lambda \neq 0)$$

$$R(\lambda;T_i)E = \sum \frac{T_i^n E}{\lambda^{mi}} = \sum \frac{T_i^n E}{\lambda^{mi}}$$

10 R(A;T,) E = R-(X) 41X1>11T11.

$$R^+(\lambda) = (I-E)R(\lambda;T) = R(\lambda;T_2)(I-E)$$

Hence R+(2) has analytic extension to 12128

b) of $\lambda = 0$ is a pole of order n of $R(\lambda;T)$, then $\lambda = 0$ is a pole of order n of $R(\lambda;T_1)$ [since $R^+(\lambda)$ is bold at origin.]

 \Rightarrow $||\lambda^n R(\lambda;T)||$ belo and $||\lambda^{n-1} R(\lambda;T)||$ not belo

c)
$$|\lambda| > ||T||$$
. $R(\lambda;T) x_0 = \sum_{\lambda n+1}^{T^n x_0} \frac{T^n x_0}{\lambda^{n+1}}$

$$Ex_0 = \frac{1}{2\pi i} \begin{cases} R(\lambda; T) \times d\lambda = x_0 \\ \text{(since terminates)} \end{cases}$$
1 residue

as before

$$T^k x_0 = \frac{1}{2\pi i} \int \lambda^k R(\lambda; T) x_0 d\lambda$$

Write X0 = EX0 + (I-E)X0

Fremovable singularity

2/14 SPECTRAL THEORY

6.1.10 THEOREM: Let $\lambda = 0$ be a pole of $R(\lambda; T)$ of order ρ . Then $\lambda = 0$ is an eigenvalue of T and the ascent and descent of T is ρ .

Moreover,

$$\mathcal{J}(L_b) = E \mathcal{X}$$
 $\mathcal{S}(L_b) = E(2(L) - \{0\}) \mathcal{X}$

Proof. O.S. VII 3.24 Dowson 1.52

6.1.11 THEOREM: of $0 \in \sigma(T)$ and $a(T) = d(T) = p < \infty$, and if $T^p X$ is closed, then 0 is a pole of order p.

Paral Dowson 1.54

6,1.12 THEOREM: (Minimal Equation Theorem) det f∈ f(T) then f(T) = 0 ⇔ ∀λ ∈ σ(T) exten

- (i) & nambles in a mbRd of &
- n (ii) It is a pole of R(I;T) of order vy and f Ras a

 nost of order ≥ vy at I

 (Can exist only a finite number of such poles)

PNOOD VIT 3.16 (D.S.)
DOWSON 1.41

$$R(\lambda;\tau) = \frac{Q_1(\lambda)}{P_1(\lambda)}$$

whenever P,W +0

(a)
$$R(\lambda;T)$$
 is national \Leftrightarrow there exists a polynomial $p:C\to C$ of degree ≥ 1 s.t. $p(T)=0$

(c) of the minimal polynomial has the factorization
$$p(\lambda) = \text{TT} (\lambda - \lambda_j)^{n_j}$$

$$j=1$$

then we can write

$$\mathcal{X} = \sum_{j=1}^{k} \mathfrak{I} \mathcal{J} \left((T - \lambda_{j})^{n_{j}} \right)$$

Hen
$$NP = 0$$
 for $p = max(n_j)$ and
$$T = \sum_{j=1}^{k} \lambda_j E_j + N$$

\$6.2 PERTURBATION OF SPECTRA

6.2.1. LEMMA: Jot T, S & B(X), and
$$A \in p(T)$$
. Of $||T-S|| \leq ||R(\lambda;T)||^{-1}$

Hon Lep(S) and

$$R(\lambda;S) = R(\lambda;T) \sum_{n=0}^{\infty} \left[(S-T)R(\lambda;T) \right]^n$$

Proof. This follows from + Rm 3.4.4 (b) since 11 (5-T) R(X;T) 11<1

$$\sigma(S) \in N(\sigma(\tau), \varepsilon) = \bigcup_{\lambda \in \sigma(\tau)} D(\lambda, \varepsilon)$$

11 R(2;5) - R(2;T) 11 < E YX * N(GH, E)

Proof 11R(x;T) 11 -> 0 as 121 -> so. Hence

 $\|R(\lambda,T)\| \leq M_{\varepsilon} \quad \text{fo} \quad \lambda \notin N(\sigma(T), \varepsilon)$

Let &= 1/ME. By the Jamma, 4 1/8-7/128, then o(S) < N(o(T), E)

11 R(A;S) - R(A;T) 11 < 11 \(\sum_{n=1}^{\infty} (S-T)^{\infty} R(\lambda;T)^{\infty} |1

5 ME 15-T11 1-115-T11ME

of 52:= = and of 118-111<82, Hen

11R(1;5)-R(1;T) 11<E

Now close 8 = mm (8, 82)

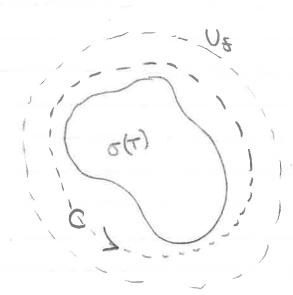
图

3/15 SPECTRAL THEORY

Here criesto 8>0 s.t. 4 115-T11<8, then 5 = \$(5) and

11 f(s) - g(T) 1 < E

poorg



C serve < Us

o(T) < unaide C

Is, >0 s.t. of 11s-T11<8, then o(s) = inside C (by last theorem) also

 $\|R(\lambda;T)-R(\lambda;S)\|<\varepsilon$

for all $\lambda \in \mathbb{C}$. Hence

 $|| s(s) - s(\tau) || = || \frac{1}{2\pi} (R(\lambda; s) - R(\lambda; \tau)) s(\lambda) a \lambda ||$

6.24. DEFINITION: Let K= the compact and E>0.

NE(K) = { Le C: | L- u | < E for some MEK}

= UBE(M)

The Hausdoff distance between two compact sets is

H-Q(K,K2) = M {E>0: K, = NE(K2), K2 = NE(R1)}

(F. Hausdoff (Mengentehre, 3rd Ed. 1935) shows that H-d is a metric on the compact sets of C)

6.2.5 DEFINITION: of (Kn) is a seq. of compact sets in C. define

liminf Kn = { Let: every nobal of lintersects all but finitely many Kn }

limsup Rn = { let: every nobed of limitersects infinitely many Rn}

6.2.6. LEMMA: liming Kn and limiting Kn are compact and limiting Kn limiting Kn limiting Kn

- common value.
 - 6.2.7. THEOREM (Hausdorff) Yet (Kn) be a sequence of compact set in C
 - equals it. (a) Hobalely limit exists, then Limkn crists and
 - then H- Limit exists and equals Lim Kn.
 - 6.28. DEFINITION: Let T map a metrie opace? into a compact subset of C.
 - yn → yo implies limsup t(yn) < t(yo)
 - b) We say that t is lower Demicontinuous at yo if yn yo implies t(yo) = liminf t(yn)
 - c) We say that t is continuous at you yn syound implies I(yo) = him = (yn)

6.2.9. THEOREM The map T → σ(T) is upper Demi-continuous at every point T ∈ B(X)

Proof. Let $T_n \to T$ in $B(\mathfrak{X})$, Let $\lambda_0 \notin \sigma(T)$, no $\lambda_0 I - T$ is invertible. Since the invertible operators in $B(\mathfrak{X})$ form an open set, $\exists \ S > 0 \ s.t.$ if

1 S-(NJ-T) 11 8

Wen S is uncertable of 12-201</28, then

11 (XI-T) - (LoI-T) 11 < 1/28

and so $\lambda \in \varrho(T)$. If $n \ge n_0$, then $||T_n - T|| \le \frac{1}{h}S$. Hence

1 (XI-T) - (XoI-T) 1

≤ | (\J_-Tn) - (\J_-T) | + | (\J_-T) - (\lambda_J-T) | |

< 1/2 x + 1/2 x = x

Here A & o(Tn) Yn>no, so lo & lumbup o(Tn).

6.2.10. Examples

a)
$$\mathcal{F} = \Omega_2(\mathbb{Z})$$
. Let (e_m) be usual basis. Define
$$T(\dots, x_{-1}, (x_0), x_1, \dots) = (\dots, x_{-1}, 0, (x_1), x_2, \dots)$$
of (x_1, x_2, \dots)
of (x_1, x_2, \dots)

$$T_n(..., x_1(x_0), x_1, ...) = (..., x_1, \frac{1}{n}x_0, (x_1), x_2, ...)$$

Then $||T-T_n|| = ||n|| \otimes T_n \rightarrow T$. $||T|| = ||T_n|| = 1$. Hence $\sigma(T)$, $\sigma(T_n) \subset \{|\lambda| \leq 1\}$

Moreover, T_n' exists and $||T_n'|| = n$. In fact $||(T_n^{-1})^k|| = n$ and so

Hence $\sigma(T_n') = \{|\lambda| \le 1\}$ and so $\sigma(T_n) = \{|\lambda| = 1\}$. We also have $\sigma(T) = \{|\lambda| \le 1\}$

$$(1\lambda-T)(\cdots 0,0,(11,\lambda,\lambda^2,\cdots)=0 \quad |\lambda|<1)$$

Hence $\sigma(\tau) \notin liming \sigma(\tau_n)$, so $\tau \mapsto \sigma(\tau)$ is not lower some continuous.

2/19 SPECTRAL MEASURE

Example: (Rickart Banach Algebras, 1960, pasa)

 $X = l_2(N)$. For $m \in N$, let $\alpha m = e^{-k}$ where k is the highest power of a that divides m

$$m = 3^k (3l+1)$$

k=0,1,..., l=0,1,...

$$T_n e_m := \begin{cases} 0 & \text{if } m = a^n(a + 1) \\ \alpha_m e_{m+1} & \text{otherwise} \end{cases}$$

Then $T_n \stackrel{a^{n-1}}{=} 0$, so $\sigma(T_n) = \{0\}$. However $||T_n - T|| \le e^{-n} \to 0$ so $T_n \to T$, and $r(T) = \frac{1}{e^2} > 0$

6.2. 11 THEOREM (J.D. Newburgh, Duke Math J. 18 (1951), p165-176)

a) of $\sigma(\tau)$ is totally disconnected, then $\tau \mapsto \sigma(\tau)$ is cont.

- (b) of TnT=TTn Vn, Non T o(T) so cont.
- then T o(T) is a sequence of normal operators in Hillert oppose,

CHAPTER VII COMPACT AND RELATED OPERATORS

§7.1 Compact Operators

7.1.1. DEFINITION: $T \in B(X,Y)$ is compact of T(s) is contained in a compact bet in Y

(S=unt ball)

K(X, Y) = all compact T: X-y

7.1.2. LEMMA: T is compact \iff for every bounded Dequence (x_n) in X here is a puberquence (x_{n_k}) euch that (Tx_{n_k}) converges in $Y \iff T(s)$ is totally bounded.

(F. Riesz Acta Math 1918)

7.1.3. Example

(a)
$$\mathcal{X}=\mathcal{Y}=\mathbb{C}[a,b]$$
 $K:[a,b]\times[a,b]\rightarrow\mathbb{C}$ continuous
$$(T_{K}u)(s):=\int_{a}^{b}K(s,t)u(t)dt \quad \forall u\in\mathcal{X}$$

Then The is compact.

(b)
$$X=Y=L_{0}[ab]$$
 $\int |K(s,t)|^{2} do \omega t < \infty$
 $(T_{K}M)(s):=\int_{a}^{b}K(s,t)M(t)dt \forall MeX$

(Hilbert-Schmidt class)

a/al SPECTRAL THEORY

7.1.4. THEOREM: Lot X, y be B-opaces

(a) of $K \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ and $R \in \mathcal{B}(\mathcal{Y}, \mathcal{X})$, $\mathcal{B} \in \mathcal{B}(\mathcal{X}, \mathcal{X})$, then AK and $K\mathcal{B}$ are compact.

(b) of K, K2 & X(X, y), then c, K, +c2 K2 is compact.

(c) A(Kn) = X(X, y) and IK-Kn11-0, then K is compact.

(2) $\forall y \in \mathcal{X}(\mathcal{X}, y)$ and \mathcal{X} , is a subspace of \mathcal{X} , then $K|_{\mathcal{X}}, \in \mathcal{X}(\mathcal{X}, y)$.

Proof. all immediate (For 10) use Cantor diagonalization)

7.1.5. COROLLARY: An operator $F: X \to Y$ with finite dimensional range us compact.

7.1.6. COROLLARY: of & wa B-opace, then K(X) is a two sided ideal in B(X) and is closed in the uniform operator topology.

 $\mathcal{F}(X)$ is the set of operators with finite rank, then $\mathcal{F}(X)$ is a 2-sided ideal, but it is not necessarily closed.

DEFINITION: A B-space X has the approximation property of any B-space X and any $T \in Y_k(X,X)$ there exists a sequence of finite rank operators F_n with

 $\|F_n-T\|\rightarrow 0$

1973 Per Enflo (Acta Math) 3 & without the approx. property

7.1.7. THEOREM (Schauder) det &, y le B-opacou, TEB(X,y)
Then T is compact iff T* is compact.

Proof. a) Suppose T is compact. Let $\Omega = T(s) = Y$, so Ω is compact. Let (y_n^*) be a bounded seq. in Y^* , day

11 yn 11 < M

Regard yn & C(D). Then

1 yn (y1) - yn (y2) | < | yn | y- y2 | < M | y, - y2 |

for all y, 32 & I , and so (yn) is uniformly equicationism set in C(D). Olso, (yn) is uniformly bounded in C(D). Hence by the angela-ascoli beason, there exists a subseq. (ynk) which is convergent in C(D), i.e.

Therefore (T* y*) converges unit on S.

Yx & S, | T + y * (x) - T + y * (x) |

= 1 ynk (Tx) - yne (Tx) - >0

> || T*y* - T*y* || → 0 => T* compact

La compact. But

T = T ** | K(X)

I canonical embedding

Honce T is compact.

0

17.18. THEOREM: Let X be reflexive. Then $T \in B(X,Y)$ is compact if and only if T maps weakly convergent beginning in X into norm convergent beginning in Y

7.7.9. THEOREM: of by is a Hilbert space, then T ∈ B(by) is compact if and only if ∃ (Fn) of finite rank operators with

11Fn-T11-0

2/22 SPECTRAL THEORY

87.2 SPECTRAL THEORY OF COMPACT OPERATORS

7.2.1. Riesz's Lemma: Let X be a normed linear opace, X_0 a proper closed subspace of X. If $0 < \varepsilon < 1$ there exists to with $||x_0|| = 1$ and $d(x_0, X_0) \ge 1 - \varepsilon$.

Proof. Take $y \in \mathcal{X} \mid \mathcal{X}_0$. det $d := dust(y, \mathcal{X}_0) > 0$. Then there exist $u \in \mathcal{X}_0$ with

图

(THEOREM: Sot M, M be subspaces of & with dum m > dum n. Then there exists x & m s.t.

 $d(x, \eta) = ||x|| > 0$

7.2.2. COROLLARY: Let X be a mormed linear opace, 5 unit

- (1) X is finite dimensional
- 12) S is compact
- (3) S is totally bounded

Proof (3) \Rightarrow (i). At X is not finite dimensional, let $\{X_1, X_2, \dots\}$ be an infinite linearly independent set. Using Riesz's lemma, we can choose $X_n \le t$. $\|X_n\|_{2} = 1$ and $\|X_n - X_m\|_{2} > 1$ 2 $\forall n \ne m$. Then S is not totally bounded

7-2-3. LEMMA: Let $T \in \mathcal{K}(X)$. At $\lambda \neq 0$, then either $\lambda \in \sigma_p(T)$ or $R(\lambda I - T)$ is closed.

7.2.4. COROLLARY: T compact, $\lambda \neq 0 \Rightarrow \lambda \notin \sigma_{c}(\tau)$.

Case i: (Xn) has a bold subsequence. I subseq. Xnk s.t.

$$y_{nk} = \lambda x_{nk} - Tx_{nk}$$

$$y_{o}$$

$$y_{o}$$

$$\Rightarrow x_{n_k} \rightarrow \frac{1}{\lambda}(y_0 + z_0) = :x_0$$

$$\Rightarrow$$
 $y_0 = \lim_{x \to \infty} (\lambda I - T) x_{n_k} = (\lambda I - T) x_0$

BO R(XI-T) W closed.

Case ii: (Xn) las no bounded subsequence. Then $||x_n|| \to \infty$.

$$Z_{n} := \frac{X_{n}}{\|X_{n}\|}$$

$$\Rightarrow (\lambda - T)Z_{n} = (\lambda - T)\frac{X_{n}}{\|X_{n}\|} = \frac{y_{n}}{\|X_{n}\|} \to 0$$

Since T is compact Tznk w for some subsequence. Hence

$$\Rightarrow Z_{n_k} \rightarrow \frac{1}{\lambda} \omega \neq 0$$

$$\Rightarrow (\lambda - T)(Z_{n_k}) \rightarrow 0$$

$$(\lambda - T)(\frac{1}{\lambda} \omega)$$

$$\Rightarrow (\lambda - T)(\omega) = 0$$

Idence he op (T).

Z

7.2.5. LEMMA: T compact. Then $\sigma_p(\tau)$ has no non-zero cluster point in C.

Proof. At is finite elimensional, σ is finite V. Suppose there exists a sequence (λn) of distinct elements in $\sigma_p(T)$ s.t. $\lambda_n \to \lambda \neq 0$. $\exists \, \chi_n \neq 0 \,$ s.t. $\exists \, \chi_n = \lambda_n \chi_n$.

CLAIM: For ne IN, the set {x1, ..., xn } is linearly independent. Suppose {x1,..., xk } is linearly independent, but {x1,..., xk+, } is linearly dependent. Then

$$X_{k+1} = \alpha_1 x_1 + \ldots + \alpha_k x_k$$

$$\Rightarrow Tx_{k+1} = \alpha_1 Tx_1 + ... + \alpha_k Tx_k$$

$$\Rightarrow x_{k+1} = \alpha_1 \frac{\lambda_1}{\lambda_{k+1}} x_1 + \dots + \alpha_k \frac{\lambda_k}{\lambda_{k+1}} x_n$$

$$\Rightarrow 0 = \alpha_1 \left(1 - \frac{\lambda_1}{\lambda_{n+1}}\right) x_1 + \dots + \alpha_k \left(1 - \frac{\lambda_k}{\lambda_{k+1}}\right) x_k$$

$$= \frac{1}{k} \sum_{k=1}^{k} \frac{\lambda_k}{\lambda_{n+1}} \left(1 - \frac{\lambda_k}{\lambda_{n+1}}\right) x_k$$

Jet $\chi_n = bp\{x_1, \dots, x_n\}$. Then χ_n is closed in χ and $\chi_n \neq \chi_{n+1}$. By Rees, $\exists y_{m+1} \in \chi_{m+1} \in \chi_n$. If $y_{m+1} = 1$ and $y_{m+1} = 1$ and $y_{m+1} = 1$ and $y_{m+1} = 1$

YXE Zm. Then

Ymti = Y, X, + ... + Ymti Xmti

where Ym+1 =0.

$$(\lambda_{m+1}-T)y_{m+1} = (\lambda_{m+1}-T)(y_1x_1+\cdots+y_nx_m)+0$$

$$\in X_m$$
1 From X_{m+1}

$$\Rightarrow Ty_{m+1} = \lambda_{m+1} y_{m+1} + z_m$$

$$1 \in \chi_{m+1}$$

$$1 \in \chi_m$$

Hence if m>n

$$||Ty_m - Ty_n|| = ||\lambda_m y_m + \widetilde{z}_{m-1}||$$

$$1 \in X_{m-1}$$

= $|\lambda_m| ||y_m + \widehat{z}_{m-1}|| \ge \frac{1}{a} ||\lambda_m|| > \varepsilon$ The sufficiently large m

2/26 SPECTRAL THEORY

7.2.6. LEMMA: Let TE K(X) and let $\lambda \neq 0$, $\lambda \in \sigma_{\alpha}(\tau)$. Then $\lambda \in \sigma_{\beta}(\tau)$

$$X_n = \frac{1}{\lambda} (T X_n + y_n)$$

I only $X_{n_k} = \frac{1}{\lambda} \left(T_{X_{n_k}} + y_{n_k} \right) \rightarrow \frac{1}{\lambda} z$ Hence $||z|| \neq 0$ since $||x_{n_k}|| = 1$, and

$$\begin{array}{c} Tx_{n_k} \rightarrow \frac{1}{\lambda} Tz \\ \downarrow \\ z \\ \Rightarrow Tz = \lambda z \end{array}$$

Hence I is an eigenvalue.

0

of most $\lambda = 0$ as a cluster point. If $\lambda \in \sigma(\tau)$, $\lambda \neq 0$, then $\lambda \in \sigma_p(\tau)$ and the eigenspace corresponding to λ is finite dimensional. In fact $\lambda \in \sigma(\tau)$, $\lambda \neq 0$, is a pole of $R(\lambda;\tau)$ and

$$E(\lambda;T) = \frac{1}{2\pi i} \int_{C(\lambda)} R(\lambda;T) d\lambda$$

las finite dimensional range.

_ also compact

Proof. $\sigma_p(\tau)$ has no non-zero cluster point. $\sigma_r(\tau) \subset \sigma_p(\tau^*)$ also how non-zero cluster point. Hence $\sigma(\tau) = \sigma_p(\tau) \cup \sigma_r(\tau) \cup \{0\}$ has no non-zero cluster point.

(IF X is infinite dimensional, then $O \in \sigma(T)$ since if \exists only a finite number of λ_j , then $I = E(\lambda_i, T) + \dots + E(\lambda_n, T)$)

Claim: M(hoI-T) is finite dimensional for ho≠0, ho ∈ o(T).

Suppose $\{X_1, ..., X_n, ...\}$ are eigenvectors corresponding to λ_0 . Suppose this set is linearly independent. Let $\mathcal{Z}_n = \mathfrak{dp}\{x_1, ..., x_n\}$. Then $\mathcal{Z}_n \subsetneq \mathcal{Z}_{n+1}$. Choose $z_n \in \mathcal{Z}_n$ with $||z_n|| = 1$ and dust $(z_n, \mathcal{Z}_{n-1}) > \lambda_0$. Then

$$\Rightarrow \|Tz_m - Tz_n\| = |\lambda_0| \|z_m - z_n\| > \frac{1}{\lambda_0} \|\lambda_0\|$$

$$A = \frac{\lambda_0}{\lambda_0} \text{ let } S(\lambda) := R(\lambda; T) - \frac{1}{\lambda} I. Then$$

$$I = (\lambda - T)R(\lambda) = \lambda S(\lambda) - TS(\lambda) + I - \frac{1}{\lambda}T$$

$$\Rightarrow \lambda S(\lambda) = TS(\lambda) + \frac{1}{\lambda}T$$

$$\Rightarrow S(\lambda) = T\left(\frac{1}{\lambda}S(\lambda) + \frac{1}{\lambda^2}I\right) \in \chi(\mathfrak{X})$$

of 1 = o(T), 1 =0, take a contour such that the made of c intersects o(T) only at to (possible since to is isolated).

$$E(\lambda_0;T) = \frac{1}{2\pi i} \int_{C} R(\lambda;T) d\lambda$$

$$= \frac{1}{2\pi i} \int_{C} \left(S(\lambda) + \frac{1}{\lambda} I\right) d\lambda$$

$$= \frac{1}{2\pi i} \int_{C} \left(S(\lambda) + \frac{1}{\lambda} I\right) d\lambda$$

$$= \frac{1}{2\pi i} \int_{C} S(\lambda) \in \mathcal{K}(\mathfrak{X})$$

$$= \frac{1}{2\pi i} \int_{C} S(\lambda) \in \mathcal{K}(\mathfrak{X})$$

Since the projection E(ho;T) is compact, it has finite dimensional range.

COROLLARY: TEX(X). of N = 0, then R(N-+) is closed

Proof. Ether $\lambda \in \sigma_p(\tau)$ or $\lambda \notin \sigma(\tau)$. In the latter case $\mathcal{R}(\lambda - \tau) = \mathcal{X}$ is learly closed. If $\lambda \in \sigma_p(\tau)$, Hen

$$\mathcal{X} = E(\lambda) \mathcal{X} \oplus E(\sigma(\tau)) \{\lambda\} \mathcal{X}$$

$$(\lambda - T) \mathcal{X} = (\lambda - T) E(\lambda) \mathcal{X} \oplus (\lambda - T) E(\lambda') \mathcal{X}$$

finite dim inventible > closed range

Hence (1-T) I w closed

7.2.8 FREDHOLM ALTERNATIVE: TEX(X), 1 = 0. Then the operator 2I-T is one-one if and only if 2I-T is onto. Either

(E)
$$y = (\lambda - T)x$$

has a wright bolution for all y & I, or the homogeneous equation

 $(H) \qquad 0 = (\lambda - T) \times$

has finitely many, non-trivial solutions. In the first case

 $(E_{*}) \qquad \qquad \Lambda_{*} = (\gamma I_{*} - L_{*})^{X_{*}}$

has a wingue bolution for all y* \in X*. In the second case

 $(H_{\star}) \qquad O = (Y I_{\star} - I_{\star}) \kappa_{\star}$

has the same number of livear independent non-trivial solutions. Moreover, in the second case, (E) has a solution for y iff $x^*y=0$ $\forall x^*$ satisfying (H^*) , and (E^*) has a solution for y^* iff $y^*x=0$ $\forall x$ satisfying H.

2/28 SPECTRAL THEORY

7.2.9. THEOREM: Let The a compact normal operator in B(R). Let Exist be the sequence of distinct eigenvalues of T arranged so that

R necessary $\lambda_0=0$ $|\lambda_1| \ge |\lambda_2| \ge \ldots \ge |\lambda_n| \ge \ldots$

 $(\lambda_i \neq \lambda_j \text{ if } i \neq j)$ Let E_j be the othogonal projection of R_j onto the jth eigenspace. Let $N_j = N(\lambda_j I - T)$. Then E_j has funte rank and eigenspace. det 111

are mutually atlaganal. Morener, $T = \sum_{i=0}^{\infty} \lambda_i E_i \quad (strong op. top)$ $T = \sum_{i=0}^{\infty} \lambda_i E_i \quad (operator top)$ uniform

In particular

Proof. Since T is normal, all root vectors have leight 1. also, eigenvectors corresponding to distinct eigenvalues are othergonal. Let

$$e_n = \{\lambda_1, \lambda_2, \dots, \lambda_n, 0\}$$
 $e_n \uparrow \sigma(\tau)$

Since E; = E(?1:3) and E is strongly countable additive,

$$I = E(\sigma(\tau)) = \lim_{n \to \infty} E(e_n)$$
 in Strong op top

det
$$S_n = T - \sum_{i=1}^n \lambda_i E_i$$
. This is normal. Then
$$\sigma(S_n) = \sigma(T) - \{\lambda_1, \dots, \lambda_n\}$$

and
$$||S_n|| = r(S_n) = |\lambda_{n+1}|$$

巴

7.2.10 THEOREM: Let $T \in B(h_1)$ be compact and normal. Then there exists a complete orthonormal set $\{X_{\alpha}\}_{\alpha \in A}$ of eigenvectors for T. Hence

$$X = \sum_{\alpha \in A} \langle x, x_{\alpha} \rangle x_{\alpha}$$

$$Tx = \sum_{\alpha \in A} \lambda_{\alpha} \langle x_{j} x_{\alpha} \rangle x_{\alpha}$$
(really just a countably inf. series)

Proof. Puck an othonormal brases in M(liI-T) for each lie op(T).

$$I = \sum_{j \in O_p(T)} E(\lambda_j) \quad (strong op. top)$$

7.2.11 THEOREM: Let $T \in \mathcal{B}(\mathfrak{X})$ such that for some $n \in \mathbb{N}$, $T^n \in \mathcal{K}(\mathfrak{X})$ Then the non-zero spectrum of T is countable with $\lambda = 0$ as the only possible cluster point. Each $\lambda \neq 0$, $\lambda \in \sigma(T)$ is an eigenvalue with finite multiplicity and $E(\lambda)$ has finite dimensional range.

Proof. Let $T'' = K \in K(\mathfrak{X})$. Then $\sigma(K) = \sigma(T'') = (\sigma(T))^n$ Horce $\sigma(T) = (\sigma(K))^{1/n}$ Spectral mapping theorem

Result follows from corresponding conclusions for K det $\lambda \in \sigma(T)$. Then $\lambda'' \in \sigma(K)$. Let $\lambda_1, \dots, \lambda_r$ be the points in $\sigma(T)$ such that

$$\gamma_{\nu}^{1} = \cdots = \gamma_{\nu}^{\kappa} = \gamma_{\nu}$$

Then {\lambda,..., \lambda \cdot \tagen in \sigma(\tau) [since discrete]. Let \tau = {\lambda^n} \]
Then

where $S = L^n$. By the proceeding theorem

$$E(\lambda^n; T^n = K) = E(\{\lambda_1, \dots, \lambda_r\}; T) = \sum_{i=1}^r E(\lambda_i; T)$$

$$E(3\lambda^n3; K)$$

finite dimensional $\Rightarrow \sum_{i=1}^n E(\lambda_i; T)$ is finite dimensional

Weakly Compact Operators

7.3.12 DEFINITION: TEB(3E, Y) is weakly compact if the weak clusure of T(B) is weakly compact in Y

By Eberlein-Smulian theorem, T is weakly compact if for every bounded seq. (xn) in X, (Txn) has a weakly convergent subsequence.

W(X, y) = bet of all weakly compact operators

7.3.13 THEOREM: (OS VI.4.2) TEW(X,Y) \$\Rightarrow\ T*X X** < QY

7.3.14 CORDLIARY: of either & or y to reflexive, then W(x,y)=B(x,y).

7.3.15 Corollar: W(X,Y) is a normed closed subspace of B(X,Y). The product of a weally compact operator with a bounded operator is weally.

7.3.16 COROLLARY: The Bet W(X) is a normed close two-Bided ideal in B(X).

7.3.17 THEOREM: TEW(X,Y) H T*: Y* - X* is w*-w cont

2)29 SPECTRAL THEORY

LEMMA: Let $T \in B(h_0)$ be compact and normal. Then the set of eigenvectors for T is complete (i.e. $z \perp \eta(\lambda-T) \forall \lambda \in t \Rightarrow z=0$)

Proof. $N(\lambda-T) = N(\lambda^*-T^*)$ Dunce $||(\lambda^*-T^*)x|| = ||(\lambda^*-T^*)x||$, Let

M = Bpom { n(1-T): 1 ex}

Let $N=M^{\perp}$. Then M,N reduce T,T^* . Let $T_1:=T|N$. T_1 is normal and compact. If $\mu \neq 0$ and $\mu \in \sigma(T_1) = \sigma_p(T_1) = \sigma_p(T)$, Hen N contains an eigenvector for T corresponding to μ . Hence $\sigma(T_1) = \{0\}$. If $\sigma(T_1) = \{0\}$. Hen since T_1 is normal, $||T_1|| = r(T_1) = 0$, so $T_1 = 0$. Thus $\lambda = 0$ is an eigenvalue for T (i). Hence $\sigma(T_1) = \emptyset \Rightarrow N = \{0\}$.

THEOREM: (DS III, 3.19) Let $f \in \mathcal{F}(T)$ and let τ be clopen in $\sigma(f(T)) = f(\sigma(T))$. Then $\sigma(T) \cap f^{-1}(T)$ is clopen in $\sigma(T)$ and

E(t; S(T)) = E(5"(t); T)

(IF OE OC(T), then E(SO3) = 0) House

 $X = \sum_{\alpha \in A} \langle x_1 x_{\alpha} \rangle X_{\alpha}$

Dince $E(\lambda_j)x = \sum \langle x, x_\alpha \rangle x_\alpha$ where $\{x_\alpha : \alpha \in \mathcal{B}_j\}$ is basis for $N(\lambda_j - T)$ $E(\lambda_j) f_{\gamma}$

1

7.2.17 THEOREM: TEB(X,Y) is weakly compact iff T is weak't to weak continuous

7.2.18 THEOREM (Gantmacher) TEW(X, Y) iff T* \ W(Y*, X*)

7.2.19 THEOREM (DS VI.7.3) Let K be a compact Hausdorff space. Then T: C(K) -> X is weakly compact iff there exists a regular strongly countably additive measure from the Borel sets of K into X such that

T8 = S& du

7.2.20 THEOREM (OS VI.7.4) If T: C(K) > X is weakly compact, then T maps weakly Cauchy sequences in C(K) into strongly convergent sequences in X. Hence T maps conditionally weakly compact sets in C(K) into relatively norm compact sets in X. [i.e. T is Dunford-Pettis]

7.2.21 COROLLARY: The product of two weakly compact operators in C(K) is strongly compact

IF T: C(K) -> weakly complete space (e.j. L1) is weakly compact.

7.2.22 THEOREM (DS VI.8.10) Let (D, E, M) he o-finite and let & he separable. If T: L1 (M) > X, then there exists a bounded measurable g: D > X with weakly compact range s.t.

7.2.23 THEOREM: (DS VI, 8.12) Let (D, Z; M) be a positive measure open. of T: 2, (M) X so weally compact then T maps woodely causely sequence in X.

7. a. at Corollar: The product of two weakly compact operators in $L_1(\Omega, \Sigma, \mu)$ is strongly compact.

7.2.25 DEFINITION: An operator $T \in B(X,Y)$ is strictly singularly it does not have a bounded inverse or any injurite climensional subspace of X.

(Denote by S(x,y))

[T. Kato J. d'Analyse Math 6 (1958), p261-322]
[Seymour Goldberg "Unbounded linear operators and Applications"

McGraw Hill, 1966]

7.2.26 THEOREM: K(X,Y) = S(X,Y)

Proof. Let $M \subset X$ be a subspace on which $T \in X(X,Y)$ is unvertible. At S_m is the unit ball of M, then TS_m is totally bounded. Hence

$$S_{m} = (Tl_{m})^{-1}(TS_{m})$$
 $Cont.$ total bd0

=> Sm totally bold

> M finite dimensional

Hence T is strictly singular.

3/6 SPECTRAL THEORY

7.2.27 THEOREM Let SEB(X,Y). TEAE

(i) S is structly singular

(ii) For any infinite dimensional subspace M = X there exists an infinite dimensional M = M such that SI_M is compact.

(i.i.) Here $\varepsilon>0$ and an infinite dimensional $M\subset X$, Here exists an infinite dimensional $N\subset M$ s.t. $||S|\eta||<\varepsilon$

7. a. 28 THEOREM (Whitley) a weakly compact operator that maps weakly convergent beginners into norm convergent peq. is strictly singular.

Proof. Let $M \in X$ be a closed subspace on which T is invertible. Let $(x_n) \in M$ be a bounded seq. Then $\exists (x_{n_k}) \not\equiv t$. $Tx_{n_k} \to y_0$ weakly so $y_0 \in TM$. Since TIM is unvertible, the seq (x_{n_k}) converges weakly to $(TIM)^{-1}y_0$, and so

Txnk -> T(T/m)-1 40 = 40

in norm. Hence $X_{nk} \rightarrow (T | m)^{-1}y_{0}$ in norm. We have shown that any closed bounded but is compact, to M is finite dimensional.

7.2.29 COROLLARY: Let $X=L_1$ or X=C(K). Then W(X)=S(X) Every bounded on C(K) into a weakly complete space is strictly singular.

7.2.30 THEOREM: (See Goldberg p86)

(a) The set S(X, y) is closed in B(X)

(b) The product of a strictly singular operator and a bounded operator is strictly singular.

(c) The set &(X) is a closed 2-sided ideal in B(X).

J.W. Calkin [ann. of Math 42 (1941)]: K(la) is the only closed two order in B(lz)

I C. Goldberg, A Markus, I. Fel'dman ['AMS Transl (2) #61 (1967)]:

K(lpl and K(co) are the only two orded ideals in B(lp), B(co) respectively

LICPED

A. Pelcyznski [Bull. Acad. Polon 13 (1965)]: W = S in B(C(K), Y) or $B(L_1)$

H. Porta [BAMS 75 (1969)]

\$7.3 NUCLEAR AND RELATED OPERATORS

bet £, y be B-spaces. of x*∈ X, y∈ y, let x* • y∈ B(X,y)
he given by

7.3.1. LEMMA: TEB(X,4) las junite dimensional range, y and

$$T = \sum_{i=1}^{n} x_{i}^{*} \otimes y_{i}$$

Proof (=) dear

(⇒) Let [y,, yn] he a brain for the range of T. Let {y*, ..., yn} he the dual brasis. Let

Then

$$T_{X} = \sum_{x_{j}^{*}(x)y_{j}} = \sum_{j=1}^{n} x_{j}^{*} \otimes y_{j}$$

7.3.2. LEMMA: $\forall (x_i^*)(y_i)$ are sequences s:t $\sum ||x_i^*|| ||y_i|| < \infty$

Then for each x & X,

S X * (x) y; converges absolutely in y

H we define

$$T_{X} = \sum \left(x_{j}^{*} x_{j} \right) y_{j}$$

Then TEB(X) and IITII=M.

Proof: 112 (x; x) y; 11 = (211x; 111y; 11) 11x11 = M 11x11

7.3.3. DEFINITION: of TEB(X, y) to such that Here exists sequences (x*) c X* and y & y s.t. Ellx; Illy; Il < so and

Than T is a muclear operator and we write

$$T = \sum_{i} x_{i}^{*} \cdot y_{i}$$

[n(xx) = all nuclear maps of x -> y)

7.3.4. LEMMA: of Ten (X, y) we can write I in the form

T = \(\frac{1}{2} \alpha_i \, \frac{1}{2} \, \text{w.} \)

where z * + X*, M = Y and 112* | = | = | | w |

Proof Jet TE Ex; & yj. Jet 0;= ||xj|| ||Ji|| \$ d + 0, let

> $Z_i^{\chi} = \frac{\chi_i^{\chi}}{\chi_i^{\chi}}$ llx, lls

W: Mijoll

of 2,=0, drop. In eiter case,

X; Z * & X X & Y,

3/11 SPECTRAL THEORY

$$T \in \mathcal{N}(\mathcal{X}, \mathcal{Y})$$
 if $T = \sum_{j=1}^{\infty} x_j^* \otimes y_j$ where $\sum ||x_j^*|| ||y_j|| < \infty$

$$\mathbb{I} \text{ equivalently } T = \sum_{j=1}^{\infty} a_j (z_j^* \otimes w_j) \text{ where } ||z_j^*|| = ||z_$$

7.3.5 THEOREM:

- (a) M(X, y) is a vector space
- (b) Every finite rank operator is nuclear
- (c) Every nuclear operator is compact

$$P_{roof}: (c) \quad ||T_{X} - \sum_{j=1}^{n} \alpha_{j} \left(z_{j}^{*} x \right) \omega_{j} || \leq \left(\sum_{j=n+1}^{bo} |\alpha_{j}| \right) ||x|| \rightarrow 0$$

$$\left(\text{unif in } ||k|| \leq 1 \right)$$

finite rank operator

0

Consider case when
$$X = M_1$$
, $Y = M_2$. Define $(e \otimes f)(x) := \langle x, e \rangle f$

7.3.6 THEOREM Let by, by be Hilbert spaces. Let (en) = by, (fn) = by, be orthonormal sequences. Let (an) be a bounded sequence in C. Let

(a) There exists $T \in B(m_1, m_2)$ such that $T_n x \rightarrow T_x$ for every $x \in m_1$

(b) If $\alpha_n \rightarrow 0$, then $||T_n - T|| \rightarrow 0$ and T is compact.

Proof. (a) Let xe Ry, m>n. Then

$$\|T_{m}x-T_{n}x\|^{2}=\langle \sum_{n+1}^{m}\alpha_{i}\langle x,e_{i}\rangle \xi_{i}, \sum_{n+1}^{m}\alpha_{i}\langle x,e_{i}\rangle \xi_{i}\rangle$$

$$= \sum_{w} |\alpha_i|^2 |\langle x, e_i \rangle|^2$$

$$\leq (\partial up |\alpha_i|^2) \sum_{n \neq i} |\langle x, e_i \rangle|^2$$

Therefore (Tnx) is a Cauchy Sequence in By. Let TX:= Im Tnx

(6) By the same calculation as in (a),

$$||Tx-T_nx||^2 \le (\sup_{i>n} |\alpha_i|^2) ||x||^2$$
 (using Bessel's ineq.)

and so if a j = 0, then I Tn-TI -> 0.

W.

7.3.7 Example. If by is separable and if (en) is an orthonormal basis for by, then

$$I = \sum_{v=1}^{N=1} e^{v} \otimes e^{v}$$

(in sense of (a)).

Proof. Let Pn = \(\subseteq e \). Then Pn is the orthonormal

projection of by onto span (e,,..,en)

[Note: if T= Ed; e; &f; , then T* = Ed; f; &e;]

$$Ix = \sum \langle x, e_i \rangle e_i$$

囚

7.3.8. THEOREM: Let by, be Hilbert spaces, TEB(by, b).
Then I is compact iff it can be represented in the form

$$T = \sum_{i=1}^{\infty} \alpha_i \left(e_i \otimes S_i \right)$$

where (e;), (f;) are orthonormal sequences and on ->0.

Proof. (\Rightarrow) Suppose $H: \mathcal{B} \to \mathcal{B}$ is compact and $H^* = H$. Then $H = \sum_{k=1}^{10} \lambda_k P_k$

where (h;) is the sequence of non-zero eigenvalues of H and P, is

the orthonormal projection onto this eigenspace. If (c; j=1,...,n;)

15 a basis for the eigenspace hor hi, then

$$\rho_i = \sum_{j=1}^{n_i} c_j \otimes c_j$$

Now relabel to get

H = ∑ \(\alpha_i \)(e_i\omega e_i)

Leigenvalues counted by multiplicity

Now consider a general compact operator T: By, -> Byz. Use

polar representation (canonical factorization). Let T*: by_- b,

satisfy $\langle Tx,y\rangle_2 = \langle x,T^*y\rangle_1$. Let $H_1 = T^*T: \mathcal{B}_1 \rightarrow \mathcal{B}_1$

Then H, is Hermitian and compact. Let H=VH, this is Hermitian , compact

Befine the partial isometry U: R(H) -> R(T) by T=UH

H = Z d;(e; ⊗e;)

 \Rightarrow $\forall x = \sum \alpha_i \langle x, e_i \rangle e_i$

 \Rightarrow Tx = UHx = $\sum \alpha_i \langle x, e_i \rangle \cup e_i$

 $\Rightarrow T = \sum_{\alpha \in (e_i \otimes f_i)}$

L= 5: orthonormal since (e;)
orthonormal and U partial
isometry with initial
domain R(H) > (e;)

3/13 SPECTRAL THEORY

7.3.9 <u>COROLLARY</u>: Let $H \in B(h_0)$ be Hermitian. Then H is compact if and only if

where (e;) is an orthonormal sequence, $\alpha_i \in \mathbb{R}$, $\alpha_i \to 0$, and where the α_i 's are the eigenvalues of H

7.3.10 THEOREM: $T \in B(h_0)$, $h_0 \ge 1$ is nuclear if and only if $T = \sum_i \lambda_i e_i \otimes S_i$

where (e;), (f;) are orthonormal and $\lambda_i \ge 0$, $\sum \lambda_i < \infty$

Proof ((=) By definition

 (\Rightarrow) If T is nuclear, then $T = \sum \alpha_n \times_n \otimes y_n$ where (x_n) , (y_n) are unit vectors in h_{j_1} , h_{j_2} respectively, and where $\alpha_i \ge 0$, $\sum \alpha_n < \infty$. Since T is compact,

T = Z X; e; OS;

(by 7.3.8) where (e;), (5;) are orthonormal, $\lambda_i \ge 0$, and $\lambda_i \to 0$ Want to show $\sum \lambda_i < \infty$. To this end, note that

$$\lambda_{k} = \langle Te_{k}, f_{k} \rangle = \langle \sum_{n} \alpha_{n} \langle e_{k}, x_{n} \rangle y_{n}, f_{k} \rangle$$

$$= \sum_{n} \alpha_{n} \langle e_{k}, x_{n} \rangle \langle y_{n}, f_{k} \rangle$$

$$\Rightarrow \lambda_{k} \leq \sum_{n} \alpha_{n} |\langle e_{k}, x_{n} \rangle \langle y_{n}, f_{k} \rangle|$$

$$\Rightarrow \sum_{k} \lambda_{k} \leq \sum_{k} \sum_{n} \alpha_{n} |\langle e_{k}, x_{n} \rangle |\langle y_{n}, f_{k} \rangle|$$

$$= \sum_{n} \alpha_{n} \sum_{k} |\langle e_{k}, x_{n} \rangle |\langle y_{n}, f_{k} \rangle|$$

$$\leq \sum_{n} \alpha_{n} (\sum_{k} |\langle e_{k}, x_{n} \rangle |\langle y_{n}, f_{k} \rangle|^{2})^{1/2}$$

$$\leq \sum_{n} \alpha_{n} (|x_{n}|| ||y_{n}|| (|bessel|_{0} ||nequality))$$

$$= \sum_{n} \alpha_{n} \langle \infty$$

包

7.3.11 <u>DEFINITION</u>: An operator T∈B(fg, fg2) is Hilbert - Schmidt (HS) if there is an orthonormal basis (ea) of fg1 such that

Define Hilbert - Schmidt norm as 1117111:= (\(\sum_{\alpha} \) | Te_{\alpha} | \(\begin{aligned} \Sigma \) | \(\lefta \) | \(\le

7.3.12 <u>LEMMA</u>: The HS norm is independent of the choice of the orthonormal basis. Also, if T is HS, then T* is HS and III till = III T* III

If U is a unitary operator, then

111 UT 111 = 111 TIL

MTU 11 = 11/11

Moreover, IT 1 = 11/11.

Proof. Let {ed : a c A} and { Sp: BeB} be orthonormal bases of by, by

11x112 = \(\int \x, \x, \x\beta \) 12

 $\| \text{Te}_{\alpha} \|^2 = \sum_{\beta} |\langle \text{Te}_{\alpha}, \delta_{\beta} \rangle|^2$

Hence

$$\sum \|Te_{\alpha}\|^2 = \sum_{\alpha} \sum |\langle Te_{\alpha}, 5_{\beta} \rangle|^2$$

=
$$\sum_{\beta} \sum_{\alpha} |\langle T^* S_{\beta}, e_{\alpha} \rangle|^2$$

Hence

IF A, Az are any basis in Ry, and B1, Bz are any basis in Ryz, then (*) shows that

In particular then, III TU III = III T III since U takes basis to basis. Then

Now YERD Fe,, lleill=1, s.t. ||T||2 = ||Te; ||2+ E

and so 11 T112 < 111 T1112

四

7.3.13 COROLLARY: IF TE HS (by, by) and (ea: deA), (fp: BeB) are orthonormal bases in by, by respectively, then

Proof $||Te_a||^2 = \sum_{\beta \in B} |\langle Te_{\alpha}, f_{\beta} \rangle|^2$ and so

3/14 SPECTRAL THEORY

7.3.14 THEOREM

(c)
$$HS(R_g)$$
 is a 2-sided ideal in $B(R_g)$. If $T \in HS(R_g)$ and $B \in B(R_g)$, then

111 BT11 < 11 B11 111+111 , 111 TB111 < 111-111 11B11

$$|||T+S||| = \left(\sum_{\alpha,\beta} |\langle (T+S)e_{\alpha}, f_{\beta} \rangle|^2\right)^{1/2}$$

=
$$\left(\sum_{\alpha,\beta} \left(\left|\left\langle Te_{\alpha}, \xi_{\beta} \right\rangle \right| + \left|\left\langle Se_{\alpha}, \xi_{\beta} \right\rangle \right|\right)^{2}\right)^{1/2}$$

$$\leq \left(\sum_{\alpha,\beta} |\langle Te_{\alpha}, \xi_{\beta} \rangle|^{2}\right)^{\frac{1}{2}} + \left(\sum_{\alpha,\beta} |\langle Se_{\alpha}, \xi_{\beta} \rangle|^{2}\right)^{\frac{1}{2}}$$

Norm since 11-11 < 11-111. Also, if 11 Tm-Tn 11-0, then 11-Tm-Tn 11-0

so Tn -T in Blby. It is easily seen that T is Hilbert - Schmidt and III Tn -TIII -O (Argument similarly to completeness of lz)

(c) $\sum \|BTe_{\alpha}\|^{2} \leq \sum \|B\|^{2} \|Te_{\alpha}\|^{2} = \|B\|^{2} \sum \|Te_{\alpha}\|^{2}$ $\Rightarrow \|BT\|^{2} \leq \|B\|^{2} \|TT\|^{2}$

Hence BT is HS. Also, $(TB)^* = B^*T^*$ is HS since T^* is HS and by first result, and so TB is HS, with

111 TBIN = 111 (TB)* 11 = 111 B* T*11 5 11 B*11 11 T*111

= || || || || || || ||

(b) follows directly from (c).

8. 1. P. 1.

囚

7.3.15 THEOREM: A Hilbert - Schmidt operator is compact. In fact, it is the limit in the HS norm of a sequence of finite rank operators.

Proof. We know IIITIII2 = ZIITe al 2 < 00. Given E>0,

∃ Am (Finte) ⊂ A s.t. ∑ IITeall² < ε². Jet α∉Am

$$T_n e_d = \begin{cases} Te_{\alpha} & \alpha \in A_n \\ 0 & \alpha \notin A_n \end{cases}$$

and extend by Innearty and continuity. In has finite rank and The HS

0

7.3.16 THEOREM: A compact operator $T \in B(B_1, B_2)$ 15 HS if and only if it has a representation

$$(*) \qquad T = \sum_{i=1}^{\infty} \lambda_i e_i \otimes \xi_i$$

where $(e_i) \in \mathcal{H}_1$, $(f_i) \in \mathcal{H}_2$ are orthonormal sequences and where $\lambda_i \geq 0$ satisfy $\sum \lambda_i^2 < \infty$.

Proof. If T is HS, then it necessarily is compact and has a representation (#) with $0 \le \lambda_2 \to 0$. Then

Te_k =
$$\lambda_k S_k$$

$$\Rightarrow \| Te_k \|^2 = \lambda_k^2$$

$$\Rightarrow \sum_{k=1}^{\infty} | Te_k \|^2 < \infty$$

Conversely, suppose T has the representation in the form (*) with $\sum \lambda_i^2 < \infty$. Expand (e;) to an orthonormal basis (\hat{e}_{α}) IF \hat{e}_{α} is a "new" element, $\tilde{e}_{\alpha} \perp e$; $\forall i$

$$T\hat{e}_{\alpha} = \sum_{i} \lambda_{i} \langle \hat{e}_{\alpha} \rangle, e_{i} \rangle \delta_{\alpha} = 0$$

Hence

$$\sum \|T\hat{e}_{\alpha}\|^{2} = \sum \|Te_{j}\|^{2} = \sum \lambda_{j}^{2} < \infty$$
Hence T is HS (since \hat{e}_{α} basis)

7.3.17 THEOREM: TEB(B1, B2) IS HS iff T*T is nuclear

Proof. (⇒) If T ∈ HS, then

where $\Xi \lambda_i^2 < \infty$. Then

Similar calculations show that

where EM: = 512 < so. Hence TAT is nuclear in B(B)) Suppose T*T is Nuclear. Certainly T*T ≥ 0 since $\langle T^*Tx_1x \rangle_1 = \langle Tx_1Tx \rangle_2 = ||Tx||_2^2 \ge 0$ Also TXT is compact, and so by Cor 7.3.9 TXT = \(\mu_i \end{array} \ru_i \end{array} \) where \(\mu_i \rightarrow 0 \) 1 orthonormal Since TXT is nuclear, \(\subseteq \mu: < 00 \) (by argument of 7.3.10) Claim: NT*T - Zintie: 000;

But T= UNT*T, SO

T= ZVII e; & Ve; [S: orthonormal Unitary SINGE E; E R(TH) partial isometry initial domain Q (TTT)

Since Z (This) = ZM: 200 T is HS by theorem 7.3.16

3/18 SPECTRAL THEORY

Proof. Since $S,T \in HS(l_g)$, we have S+T and S+iT are HS. Hence $(S+T)^*$ and S^*-iT^* are also HS. Therefore

and also

Hence $S^*T \in \eta$ for any $S, T \in HS$. But $S \in HS \implies S^* \in HS$, and so $ST \in \mathcal{N}$ for any S, T

References: 1) O.S. Part II XI.6, XI.9

- 2) I.C. Gohberg MS Krein Introd. to non-self-adjoint operators AMS Translations of Math Monographs, vol. 18 (1969)
- 3) J.R. Ringrose Compact non self-adjoint operators Van Nostrand Math Studies, vol 35 (1971)

7.3.19 <u>THEOREM</u>: (a) IF $T \in N(R_g)$ is Hermitian and has eigenvalues (hi) counted according to multiplicity (c.a.m), then $\Sigma(h_i) < \infty$

(b) IF (ea) is an orthonormal basis for by and T as above,

$$\sum_{\alpha} \langle Te_{\alpha}, e_{\alpha} \rangle = \sum_{i=1}^{\infty} \lambda_i$$

where the convergence is absolute

Proof. a) Since T*=T, Corollary 7.3.9 implies

$$T = \sum_{i} \lambda_{i} \times_{i} \otimes X_{i}$$

where (xi) is orthonormal and his are c.a.m. Since T is nuclear,

Where $\sum \alpha_i < \infty$, $\alpha_i \ge 0$, $\|u_i\| = \|v_i\| = 1$.

Now

$$\lambda_{k} = \langle T_{X_{k}}, x_{k} \rangle = \langle \sum_{\alpha_{i}} \langle x_{k}, u_{i} \rangle V_{i}, x_{k} \rangle$$

$$= \sum_{\alpha_{i}} \langle x_{k}, u_{i} \rangle \langle v_{i}, x_{k} \rangle$$

$$\Rightarrow |\lambda_k| \leq \sum |\alpha_i| |\langle x_k, u_i \rangle| |\langle v_i, x_k \rangle|$$

$$\Rightarrow \sum_{k=1}^{\infty} |\lambda_k| \leq \sum_{i=1}^{\infty} |\langle x_{ik}, M_i \rangle| |\langle v_i, x_k \rangle|$$

$$\leq \sum_{k=1}^{\infty} \alpha_{i} \left(\sum_{k=1}^{\infty} |\langle x_{k}, u_{i} \rangle|^{2} \right)^{1/2} \left(\sum_{k=1}^{\infty} |\langle v_{i}, x_{k} \rangle|^{2} \right)^{1/2}$$

$$= \sum_{k=1}^{\infty} d_k < 00$$

(b) Let (ea) be an orthonormal basis. With T as in (a)

$$: \langle Ted, ed \rangle = \sum_{i} \lambda_{i} |\langle ed, x_{i} \rangle|^{2}$$
 (*)

:
$$|\langle Te_a, e_a \rangle| \leq \sum |\lambda_i| |\langle e_a, x_i \rangle|^2$$

We thus obtain

$$\sum_{\alpha} |\langle Te_{\alpha}, e_{\alpha} \rangle| \leq \sum_{i} |\lambda_{i}| \left(\sum_{\alpha} |\langle e_{\alpha}, x_{i} \rangle|^{2}\right)$$

$$= \sum_{i} |\lambda_{i}| \|\chi_{i}\|^{2}$$

$$= \sum_{i} |\lambda_{i}| < \infty$$

Hence Z (Ted, ed) 18 absolutely convergent. Therefore

$$\sum_{\alpha} \langle Te_{\alpha}, e_{\alpha} \rangle = \sum_{\alpha} \sum_{i} \lambda_{i} |\langle e_{\alpha}, x_{i} \rangle|^{2}$$

Since =
$$\sum_{i} \sum_{\alpha} \lambda_{i} |\langle e_{\alpha}, x_{i} \rangle|^{2}$$

$$= \sum_{i} \lambda_{i} ||\chi_{i}||$$

7.3.20 THEOREM: If TEM(B) and (ea) is any orthonormal basis for by, then the series

converges absolutely. This sum does not depend on the choice of the basis.

$$A = \frac{1}{2} \left(T + T^* \right)$$

are Hermetian nuclear operators. Let (a;), (B;) be eigenvalues of A, B respectively. Then

$$\sum \langle Te_{d}, e_{a} \rangle = \sum \langle Ae_{a}, e_{a} \rangle + i \sum \langle Be_{a}, e_{a} \rangle$$

$$= \sum \alpha_{j} + i \sum \beta_{j}$$

and this sum is abs. convergent.

Remark: In fact, if $T \in \eta(R_3)$, then $\Sigma \langle Tea, e_a \rangle = \Sigma \lambda_i$ where (λ_i) are the eigenvalues of T c.a.m. [Ringrose Th 3.3.13 pl39]

3/20 SPECTRAL MEASURE

7.3.21 DEFINITION: If T is a nuclear operator on by, define
$$trT = \sum \langle Te_{\alpha}, e_{\alpha} \rangle$$
 (= $\sum \lambda_n$)

(trace of T) where (ea) is any orthonormal basis.

(c) If
$$S \ge 0$$
, then $trS \ge 0$. If $S \ge 0$ and $trS = 0$, then $S = 0$

(a)
$$+r(BS) = +r(SB)$$

Proof. (a), (b), (c) clear from definition

$$tr(SU) = \sum \langle SUe_{\alpha}, e_{\alpha} \rangle = \sum \langle SUe_{\alpha}, U^*Ue_{\alpha} \rangle$$

since (Ved) is another orthonormal basis.

To prove the general case when B is not unitary we use the following lemma.

7.2.33 LEMMA: Every BEB(B) is a finite linear combination of unitary operators.

Proof. Write $B = A_1 + i A_2$ where $A_i^* = A_i$. Treat case $B = B^*$, $||B|| \le ||B|| \le ||B|| = ||$

for fec[-1,1]. Then

(*)
$$\xi(f)\xi(f)_{*} = f_{g} + (1-f_{5}) = 1$$

Note that

Let U:= 5(B). By (x), UU*= I= U*U. We also have

$$B = \frac{1}{2}(U+U^*)$$

Returning to the proof of (d), write B as a finite linear combination of unitary operators and use the previous result.

7.3.24 <u>DEFINITION</u>: IF 5,T & HS(kg), define [S,T]:= tr(T*s)

(Well-defined since T*S is nuclear)

on HS(B) such that

||| T ||| = [T,T]

Thus HS(B) is a Hilbert space under this inner product (In particular,

[[5,T]] < ||S|| ||T||

Moreover, the map Shast satisfies

(*) [ST,R] = [T,S*R]

Proof. $[T,T] = tr(T^{*}T) = \sum \langle T^{*}Te_{\alpha}, e_{\alpha} \rangle = \sum ||Te_{\alpha}||^{2} = ||T|||^{2}$ Rest clear.

W. Ambrose [TAMS 57 (1945)] Ht-alq. Hilbert space B-algebra satisfying (*)

7.3.25 THEOREM: IF TENS(B),

111T111 = (\(\Si\lambda_n^2\))/2

where (In) are the eigenvalues of NT*T = |T| counted according to multiplicity.

Proof. $0 \leq T^{2k}T \in M$. Then

O But tr(TXT) = [T,T] = 11T112

3/21 SPECTRAL MEASURE

87.4 FREDHOLM OPERATORS AND INDEX

7.4.1 DEFINITION: Let X, Y be B-spaces, $T \in B(X, Y)$. Suppose that Rng(T) is closed in Y.

(a) Let
$$\alpha(\tau) := \dim \mathfrak{N}(\tau)$$
 if $\dim \mathfrak{N}(\tau) < \infty$ ("nullity")
$$= + \infty \qquad \text{otherwise}$$

(b) Let
$$\beta(T) := dim Y/R(T)$$
 if finite ("defect" or "deficiency")

= +00 \quad \text{otherwise}

(c) We say that T is a Fredholm operator if R(T) is closed and both x(T) and p(T) are finite. Define the index of T to be

Ind
$$(T) := \alpha(T) - \beta(T) \in \mathbb{Z}$$

Write \$\overline{D}(X,Y)\$ for the set of all Fredholm operators

(3)
$$T \in \Phi_+(X,Y)$$
 if $R(T)$ is closed and $\alpha(T) < \infty$
 $T \in \Phi_-(X,Y)$ if $R(T)$ is closed and $\beta(T) < \infty$

In either case, we say that T is semi-Fredholm and define the index as in (c). Then ind (T) = Zu {± 00}.

Examples of Fredholm operators:

b)
$$\lambda I - K$$
 for $\lambda \neq 0$, K compact (Here ind $(\lambda I - K) = 0$

7.4.2 LEMMA: IF R(T) IS closed, then

$$\alpha(T^*) = \beta(T)$$
 $\beta(T^*) = \alpha(T)$

$$\alpha(T) = \alpha(T^{**})$$
 $\beta(T) = \beta(T^{**})$

Proof. By theorem 5.2.4, $R(T^*) = N(T)^{\perp}$, Since N(T) is closed, $(N(T))^* = X^*/\eta(T)^{\perp}$, and so

$$\mathcal{J}(L)_{*} = \mathcal{X}_{*} / \mathcal{K}(L_{*})$$

Then

$$\alpha(\tau) = \lim_{t \to \infty} \gamma(\tau) = \lim_{t \to \infty} \gamma(\tau) = \lim_{t \to \infty} \gamma(\tau)$$

1 since Finite

or both so

$$=\beta(T*)$$

Similarly,

$$\left(\sqrt[4]{R(T)} \right)^{\frac{1}{2}} = R(T)^{\frac{1}{2}} = N(T^*)$$

$$\sqrt[4]{R(T)}$$

$$\sqrt[4]{R(T)}$$

$$\sqrt[4]{R(T)}$$

$$\sqrt[4]{R(T)}$$

and so

and

$$\beta(T) = \dim \left(\mathcal{Y}_{R(T)} \right) = \dim \left(\mathcal{Y}_{R(T)} \right)^* = \dim \mathcal{N}(T^*)$$

$$= \alpha(T^*)$$

Finally, R(T) closed $\Rightarrow R(T^*)$ closed $\Rightarrow R(T^{**})$ closed

$$\alpha(\tau) = \beta(\tau^*) = \alpha(\tau^{**})$$

$$\beta(T) = \alpha(T^*) = \beta(T^{**})$$

图

7.4.3 COROLLARY:
$$T \in \overline{\Phi}_+ \Leftrightarrow T^* \in \overline{\Phi}_-$$

$$T \in \overline{\Phi}_- \Leftrightarrow T^* \in \overline{\Phi}_+$$

7.4.4. LEMMA: If No 15 a finite dimensional subspace of X, then there exists a subspace U, of X with

X = N. O. N,

Proof. Let \(\mu_1, ..., \mu_n \) be a basis in \(\mu_0 \). Let \\ \{\chi_1^*, ..., \chi_n^*} \\ \text{be a dual basis (of \(\mu_0^* \) but extended to \(\chi_1^* \) \)

x* 4 = 8 ij

Let U:= {x*,..., xn 31 = X. Then U, is a subspace of X.

Claim: $\mathcal{U}_{i} \cap \mathcal{V}_{0} = \{0\}$, Suppose $u = \sum_{i} \alpha_{i} u_{i} \in \mathcal{U}_{0}$. If $u \in \mathcal{U}_{i}$, then $x_{i}^{*} u = 0 \quad \forall j$, i.e.

$$\alpha^2 = X_{k}^2 \left(\sum \alpha^2 n^2 \right) = 0$$

and so M = 0.

Let $P := \sum_{k} x_{k}^{*} \otimes u_{k}$, Then $P_{X} = \sum_{k} (x_{k}^{*} x) u_{k} \in \mathcal{N}_{o}$. If $u \in \mathcal{N}_{o}$, $u = \sum_{k} a_{k} u_{k}$, then

and

$$x_{i}^{*}(x-p_{x}) = x_{i}^{*}x - \sum_{k} (x_{k}^{*}x) x_{i}^{*}(w_{k}) = x_{i}^{*}x - x_{i}^{*}(x) = 0$$

Vonce X-PX EU, , 80

 $X = PX + (X - P_X) \in U_0 + U_1$

团

7.4.5. LEMMA: Let \mathcal{X} be a Banach space, \mathbb{R} a subspace of \mathcal{X} . If \mathcal{X}/\mathbb{R} is n-dimensional, then there exists an n-dimensional subspace $\mathcal{V} = \mathcal{X}$ with $\mathcal{X} = \mathbb{R} \oplus \mathcal{V}$

Proof Jet $\{z_1,...,z_n\}$ be such that $\{[z_1],...,[z_n]\}$ is a basis for X/R. Then $\{z_1,...,z_n\}$ is linearly independent. Jet $V = \text{apan } \{z_1,...,z_n\}$

Claim: VnR = 63. If x = Sazz & VnR, then

0 = Za: [z:] (since in R)

⇒ di=0 Hi ⇒ X=0

Claim: X = V + R. Yet $X \in X$. Look at $[x] \in X/R$ Then

[X]= Z «: [zi]

If V == \(\int a; z; \in V'\), then r=V-x \(\int R \) singe [V] = [X], so X=V+r. \(\overline{

7.4.6 COROLLARY: There exists a continuous projection Q: X-> R with range Q and null space V [Hypotheses as in last lemma]

3/25 SPECTRAL THEORY

References: J. Dieudonné (Bull. Sci. Math Fr. 67 (1943))

B. Youd Doke J. 18 (1951)

F.V. Atkinson Moth Sbornik

I.C. Gohberg-M.S. Krein, AMS Translation (2) 13 (1960) p185

T. Kato (J. 2) Analyse Math 6 (1958) pd61

7.4.7 THEOREM (Atkinson): If $T \in \overline{\mathcal{I}}(\mathcal{X}, \mathcal{Y})$, then there exists a closed subspace \mathcal{X}_0 of \mathcal{X} and a $\beta(T)$ -dimensional subspace \mathcal{Y}_0 of \mathcal{Y}_0 s.t.

$$X = X_0 \oplus N(T)$$
 $Y = R(T) \oplus Y_0$

Moreover, there exists $S \in B(Y, X)$ s.t.

Proof. Since N(T) is finite dimensional, by lemma 7.4.4 $\exists \mathcal{X}_0$ such that $\mathcal{X} = \mathcal{X}_0 \oplus N(T)$. Similarly, $\mathcal{Y}(\mathcal{R}(T))$ is finite dimensional so by lemma 7.4.5 $\exists \mathcal{Y}_0$ with $\mathcal{Y} = \mathcal{Y}_0 \oplus \mathcal{R}(T)$.

Claim: T/Xo 15 one-to-one. This follows since n(T) o Xo= Fo}.

Let $T_i := T(X_0, Then T_i \in B(X_0, R(T))$. In fact $R(T_i) = R(T)$. For if $y \in R(T)$, then y = Tx for some x. Write $x = x_0 + n$, where $x \in X_0$ and $n \in N(T)$. Then $y = Tx = Tx_0 = T$, x_0 . Therefore

 $S_1 := T_1^{-1} \in \mathcal{B}(\alpha(T), \mathcal{X}_0)$

By corollary 7.4.6, there exists a continuous projection P: y -> R(T) with N(P) = yo. Let

S:= S,P = T,-1P

Then S∈ B(Y, X). Rest clear.

7.4.8. COROLLARY: With assumptions as above,

ST = Ix-F

TS = Iy-Fa

where F, and Fz are finite rank operators in X, and Xz respectively.

Proof. $(ST-I)_{X}=0$ for $x\in\mathcal{X}_{o}$, Since $\mathcal{X}=\mathcal{X}_{o}\oplus \mathcal{N}(T)$ and $\mathcal{N}(T)$ has finite dimension, ST-I has finite dimensional range

Similar argument for TS-Iy.

0

7.4.9. LEMMA: Let \mathfrak{X} be a normed linear space with $\mathfrak{X}=\mathfrak{N}\oplus\mathfrak{X}_0$ where \mathfrak{N} is finite dimensional and \mathfrak{X}_0 is closed. If \mathfrak{X}_1 is a linear manifold in \mathfrak{X} and $\mathfrak{X}_0 = \mathfrak{X}_1$, then \mathfrak{X}_1 is closed.

Proof. Let M:= Mn X, . This is a finite dimensional subspace and so it is closed.

Claim: $X_1 = M \oplus X_0$. Centainly $M \cap X_0 = M \cap X_0 \cap X_1 = fos$ Now suppose $X \in X_1$. Then $X = N + X_0$ where $N \in M$ and $X_0 \in X_0$. Then $N = X - X_0 \in X_1$, and $N \in N_1$, so $N \in M$. Since $X_0 \in X_1$ also, we see that $X_1 = M + X_0$.

Since M and Xo are closed, it follows that X, is closed.

Yard M is F.d.)

7.4.10 THEOREM: Let $T \in B(X, Y)$ and suppose there exists $S_1, S_2 \in B(Y, X)$ and compact operators $K_1 \in X(X)$ and $K_2 \in X(Y)$ s.t.

ST=Ix-K, TSa=Iy-K2

Then T = I(X,y).

Proof. $N(T) = N(S_1T) = N(J_X - K_1)$; $d_{1m}N(J_X - K_1) < \infty$ Since K_1 is compact $(1 \in \sigma(K_1) \Rightarrow eigenvalue of Finite multiplicity)$

 $R(T) \supset R(TS_a) = R(I-K_2)$; closed, has finite codimension Hence R(T) is closed (by lemma), and has finite codimension

 $\beta(T) = \dim \mathcal{Y}_{R(T)} \leq \dim \mathcal{Y}_{R(I-K_2)} < \infty$

3/27 SPECTRAL MEASURE

7.4.11 INDEX THEOREM: Let X, Y, X be B-spaces. Let TE D(X, Y), SE D(Y, X). Then ST & D(X, X) and

ind (ST) = ind(S) + ind(T)

Proof. IT, E I(Y, X), S, E I(X, Y) s.t.

 $T_1T = I - F_1$ $TT_1 = I - F_2$ $S_1S = I - F_3$ $SS_1 = I - F_4$

Then

 $(T_1S_1)(ST) = T_1(I-F_3)T = T_1T - T_1F_3T$

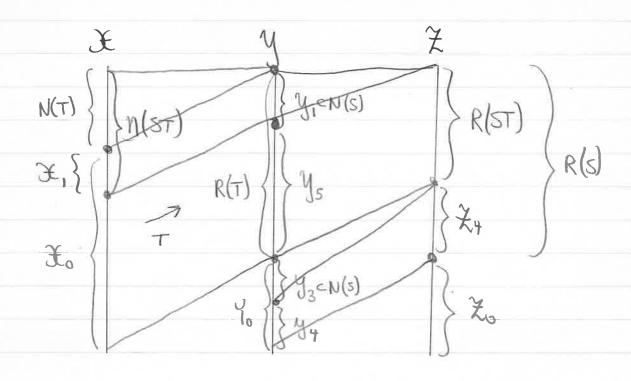
 $= I - F_1 - T_1 F_3 T = I - F_5$ Finite rank

 $(ST)(T,s_1) = S(I-F_a)S_1 = SS_1 - SF_aS_1$

 $= I - F_3 - SF_2S_1 = I - F_6$

Finite rank

Hence by Theorem 7.4.10 STE I(X, X)



Let
$$N:=R(T)\cap N(S)$$
 5.2.

$$\exists y_a \in R(T), y_3 \in \eta(s)$$
 $_{5} + (i)R(T) = y_1 \oplus y_2$ $_{(ii)} \eta(s) = y_1 \oplus y_3$

Since y_3 is f.d. $R(T) \oplus y_3$ is closed and has finite codimension. Therefore $\exists y_4$ f.d. such that

(iv)
$$\eta(st) = \eta(t) \oplus \mathcal{X},$$

(v)
$$R(s) = R(st) \oplus \chi_{4}$$

For suppose ZER(ST) n Z4 = SR(T) n Z4 - S(Y1 DY2) n X4

= 5 y2 0 24 = 5 y2 0 5 y4

Then $z = Sy_0 = Sy_4 \Rightarrow y_2 - y_4 \in \eta(s) = y_1 \oplus y_3$ But $y_0 - y_4 \in y_2 \oplus y_4$ and $y_1 \oplus y_3 \cap y_2 \oplus y_4 = \emptyset$ Thence $y_0 = y_4$ But $y_2 \cap y_4 = \S \circ 3$, and so $y_0 = y_4 = 0 \Rightarrow z = 0$, Now let $z \in \mathcal{R}(s)$. Then $z = Sy_1 + y_2 \in y_3$. Since

y = 4+42+43+44

we have z = 5y = Sy2+Sy4 ∈ R(ST) + Z4

CLAIM: T is one-to-one of X, onto Y,
S is " Y4 onto Z4

Proof. Let $y_1 \in Y_1 = R(T) \cap M(S)$. $\exists \overline{x} \text{ with } y_1 = T\overline{x}$ But

 $\overline{\chi} = N + X_0$ $n \in N(T), \chi \in \mathcal{X}_0$

 \Rightarrow $y_1 = T\bar{x} = Tx_0$

But $0 = Sy_1 = STx_0 \rightarrow X_0 \in N(ST) \cap \mathcal{X}_0 = \mathcal{X}_1$. Hence $T: \mathcal{X}_1 \rightarrow \mathcal{Y}_1$ is one-to-one onto (1-1 since $\mathcal{X}_1 \cap N(T) = (0)$)

Jet Syy=0, then $y_4 \in y_1 \oplus y_3 \implies y_4=0$. S is clearly onto $\chi_4 \in y_4 \in y_1 \oplus y_3 \implies y_4=0$.

Hence dim X, = dim y, and dim y4 = dim Z4

$$\begin{array}{ll} (iv) \Longrightarrow & \alpha(ST) = \alpha(T) + \dim \mathcal{X}, \\ (v) \Longrightarrow & \beta(ST) = \beta(S) + \dim \mathcal{X}_{9} \\ (iii) \Longrightarrow & \beta(T) = \dim \mathcal{Y}_{3} + \dim \mathcal{Y}_{9} \\ (ii) \Longrightarrow & \alpha(S) = \dim \mathcal{Y}_{1} + \dim \mathcal{Y}_{3} \end{array}$$

= Ind(T) + Ind(S)

3/28 SPECTRAL THEORY

7.4.12 THEOREM: Let $T \in \overline{\Phi}(X,Y)$, $K \in X(X,Y)$. Then $T+K \in \overline{\Phi}$ and $\operatorname{Ind}(T+K) = \operatorname{Ind} T$

Proof. By 7.4.7] TIE D(Y, X) s.t.

T, T = I-F, TT1 = I-F2

Then

 $T_{1}(T+K) = I - F_{1} + T_{1}K \in \overline{\Phi}(X,X) =) T+K \in \overline{\Phi}$ $\underbrace{T_{1}(T+K) = I - F_{1} + T_{1}K \in \overline{\Phi}}_{\text{compact}}$

and

Ind T, + Ind (T+K) = Ind (T, (T+K)) = 0

But

ind T, + ind T = ind (T,T) = ind (I-F,) = 0

and so ind (T+K) = mdT

1

7.4.13 Example: (a) Let $K \in B(loo)$ be given by

 $K(X_1, X_2, X_3, ...) = (X_1, 0, 0, ...)$

$$(I-K)(x_1,x_2,...) = (0,x_2,x_3,...)$$

$$\Rightarrow \alpha(I-K)=1$$
 $\beta(I-K)=1$

Since $\alpha(I) = 0 = \beta(I)$, you have increased both α and β by perturbing by K.

7. 4.14 THEOREM: Let $T \in \overline{\Phi}(X,Y)$. There exists y > 0 such that if ||B|| < y, $|B| \in B(X,Y)$, then $|T + B| \in \overline{\Phi}(X,Y)$ and ||M|| (T + B) = ||M|| T. Moreover

$$\alpha(T+B) \leq \alpha(T)$$

 $\beta(T+B) \leq \beta(T)$

Prof. 3 SE E (Y, X) s.t.

Then
$$S(T+B) = I - F_1 + SB$$
 and $(T+B)S = I - F_a + BS$
= $I + SB - F_1$ = $I + BS - F_2$

If ||B|
||S||, then I+BS and I+SB are invertible.
(Let y = ||S||-1.) Then

$$((1+58)^{-1}S)(T+B) = I - (I+58)^{-1}F \in \mathbb{P}$$

$$(T+B)(S(I+BS)^{-1}) = I - F_a(I+BS)^{-1} \in \overline{\Phi}$$

Hence T+B 15 Fredholm by 7.4.10

Since I+SB and I+BS are invertible, they are Fredholm operators. Then

$$Ind ((I + SB)^{-1}) + Ind S + Ind (T + B) = Ind (I - (I + SB)^{-1}F) = 0$$

$$\implies Ind (T + B) = -Ind S$$

But and $S + IndT = Ind(I-F_1) = 0$, so and T = -IndS. Hence and (T+B) = IndT.

Recall $ST = I_{X_0}$, so S(T+B) = I + SB on X_0

Now I+SB is one-to-one on \mathfrak{X}_0 , so $\mathfrak{N}(T+B) \cap \mathfrak{X}_0 = \{0\}$ Since $\mathfrak{X} = \mathfrak{N}(T) \oplus \mathfrak{X}_0$, we must have

For suppose $n > \alpha(T)$. Let $x_1, ..., x_n$ be any vectors in $\mathcal{N}(T+B)$. We can write

Since {ni,..., nn } are linearly dependent, I (di) s.t.

η(T+B) 3 Σα; X; = 0 + Σα; y; ε ξο

⇒ ∑ q:x: =0

=> {x,,...,xn} lin.dep

= dim M(T+B) < n

Since n was any number bigger than $\alpha(T)$, we have $\alpha(T+B) \leq \alpha(T)$. Argument for $\beta(T+B)$ is similar

图

7.4.15 THEOREM: Let $T \in B(X,Y)$, $S \in B(Y,Z)$. If $ST \in \overline{\Phi}(X,X)$, then $T \in \overline{I} \Leftrightarrow S \in \overline{\Phi}$

Proof. Suppose TE . 3 T, E & s.t.

 $TT_1 = J - F_1 \Rightarrow STT_1 = S - SF_1$

Then S = (ST) T, + SF, = Fredholm + Finite rank = Fredholm

1 by 7.4.12

Use other side for converse

Ø

(Can use this to prove theorem 7.4.14)

7.4.16 THEOREM: Let $T \in B(X,Y)$, $S \in B(Y,Z)$ s.t. $ST \in \overline{\Phi}(X,Z)$

(a) If α(s) < Do, then T, S ∈ I

(b) IF B(T) < NO, then T, S ∈ €

Proof. (a) $R(S) \supset R(ST)$. Since $R(ST) < \infty$, then R(S) is closed and $R(S) \leq R(ST)$. Hence S is Fredholm, so by 7.4.15, T is also Fredholm

(b) For (b) use adjoints and part (1) $\left[\alpha(\tau^*) = \beta(\tau) < \infty\right]$

7.4.17 Example: T: l2(1N) -> l2(Z)

 $T(X_1, X_2, ...) = (... 0, (0), X_1, X_2, ...)$

 $\chi(T) = 0$ $\beta(T) = 10$ R(T) closed

=> TE 5+

Let $S: l_2(\mathbb{Z}) \longrightarrow l_2(\mathbb{N})$ by $S(...0,(0), x_1, x_2...) = (x_1, x_2,...)$ Then $\alpha(S) = \infty$, $\beta(S) = 0 \Rightarrow S \in \overline{\Phi}$.

However, ST = I & D.

88.1 The Single Valued Extension Property (SVEP)

 $T \in B(X)$, X complex B-space

8.1.1. DEFINITION: $T \in \mathcal{B}(X)$ has SVEP at $\lambda_0 \in \mathcal{C}$ if for any analytic function $f: N_{\lambda_0} \to \mathcal{X}$ (N λ_0 nbhd of λ_0) such that if

(XI-T) S(X) = O YX E NXO

then $S(\lambda) = 0$ $\forall \lambda \in N_{\lambda 0}$.

That the SVEP of that SVEP of every $\lambda_0 \in \mathbb{C}$

(Write TE P(X))

Suppose λ_o is in resolvent. Then T has SVEP at λ_o , Since

 $5(\lambda) = R(T; \lambda X \lambda I - T) f(\lambda) = 0$

8.1.2. THEOREM: If T fauls SVEP, then op (T) has a non-empty open set.

Proof. \exists nbhd N_{λ_0} and $5 \neq 0$ with $(\lambda - T) \cdot \xi(\lambda) = 0$ for every $\lambda \in N_{\lambda_0}$. If $\lambda_1 \in N_{\lambda_0}$, $\xi(\lambda_1) \neq 0$, then $\lambda_1 \in \sigma_p(T)$

$$(\lambda - T) \xi'(\lambda) + \xi(\lambda) = [(\lambda - T)\xi(\lambda)] = 0$$

$$\Rightarrow (\lambda_1 - T) f'(\lambda_1) = 0$$

If $\xi(\lambda_1) \neq 0$, then $\lambda_1 \in \sigma_p(\tau)$. If $\xi'(\lambda_1) = 0$, then

$$(\lambda - T) \xi'(\lambda) + \xi'(\lambda) + \xi'(\lambda) = 0$$

$$\Rightarrow (\lambda_1 - T) \xi''(\lambda_1) = 0$$

If $\xi''(\lambda_1) \neq 0$, then $\lambda_1 \in \sigma_p(\tau)$. If $\xi''(\lambda_1) = 0$, proceed as before. Eventually $\xi^{(n)}(\lambda_1) \neq 0$ since ξ is analytic.

M

(Actually showed Nho = op (T))

8.1.3 Remark - Converse of theorem 8.1.2 is not true. Let X be a non-separable Hilbert space. Let {ex:11151} be a complete orthonormal set for X. Define

$$Te_{\lambda} := \lambda e_{\lambda}$$

Then $\{1\lambda 1 \le 1 \le Cp(T)\}$. Note that $T^*e_{\lambda} = \lambda^*e_{\lambda}$. Its normal therefore, Suppose $(\lambda - T) \le (\lambda) = 0$ for all λ in some n bhd of 0 $N_0 = \{1\lambda 1 \le 1 \le Then$

(eigenvectors for distinct eigenvalues)

$S(\lambda_1) \perp S(\lambda_2)$ for $\lambda_1 \neq \lambda_2$

Hence $\xi(\lambda) = c_{\lambda}e_{\lambda}$, but this is not continuous unless $\xi(\lambda) = 0$ $\forall \lambda \in \mathbb{N}_{0}$ Hence T has SUEP

8.1.4 THEOREM: The following operators have SVEP

- (a) All operators on finite dimensional spaces
- (b) All compact operators
- (c) I with o(T) or op(T) nowhere clease
- (d) Hermitian operators
- (e) Unitary operators
 - (f) Normal operators

8.1.5. THEOREM: Let T∈ B(X) be surjective but not injective. Then T fails SVEP.

Proof. Will show T fails SVEP at $\lambda=0$. By the Open Mapping theorem, $\exists \ K>0 \ s.t. \ T \ maps \ \{||x|| \le K\} \ onto the unit ball . T not 1-1 implies <math>\exists \ X_0$, $||x_0||=1 \ s.t. \ Tx_0=0$. T surjective, so $\exists \ x_1$, $||x_1|| \le K \ s.t. \ Tx_1=x_0$. By induction $\exists \ (x_n) \in \mathcal{X}$ with

 $||X_{n+1}|| \le K ||X_n||$ $Tx_{n+1} = X_n$

Note $||x_n|| \le K^n$. Define $f(\lambda) := \sum_{n=0}^{10} \lambda^n x_n$. This converges for $|\lambda| < 1/K$. Now $f(0) = x_0 \ne 0$, so $f(0) = x_0 \ne 0$ on $|\lambda| < 1/K$. However,

$$\Rightarrow \|(\gamma - L) \sum_{n=1}^{\infty} \gamma_{n} x^{n} \| < |\gamma|_{N+1} K_{N} = |\gamma| |\gamma K|_{N} \to 0$$

$$(2) \text{ where } \gamma_{N} x^{1} = |\gamma| |\gamma K|_{N} \to 0$$

$$(2) \text{ where } \gamma_{N} x^{1} = |\gamma| |\gamma K|_{N} \to 0$$

$$\Rightarrow (\lambda - T) \xi(\lambda) = 0 \quad \forall |\lambda| < 1/k$$

Therefore T fails SVEP near \ = 0.

8.1.6. Remark (a) The above condition for the failure of SVEP is not necessary

(b) IF T fails SVEP at $\lambda=0$, then a-T fails SVEP of $\lambda=\alpha$. Hence if T has SVEP, then a-T possesses SVEP

8.1.7 COROLLARY: Let Thave SVEP.

(a) $\lambda \in \rho(\tau) \iff \lambda - \tau$ is onto

(b) $\lambda \in \sigma(\tau) \iff \lambda - \tau$ is not onto

Proof. $\lambda \in \rho(\tau) \Rightarrow \lambda - \tau$ by gentine $\Rightarrow \lambda - \tau$ onto . Compressely. O if $\lambda - \tau$ is onto and τ has SVEP, then $\lambda - \tau$ must be injective. So $\lambda \in \rho(\tau)$

8.1.8. Remarks

(a) If T has a right inverse S but no left inverse,

then T is onto, but not 1-1 (otherwise invertible by Open Mapping Theorem)

Hence T fails SVEP. In particular, if $x_0 \neq 0$, $x_0 \in N(T)$, then

$$f(\lambda) := \sum_{n=0}^{\infty} (S_n x_0) \lambda^n \neq 0$$

but $(\lambda - T) \xi(\lambda) = 0$

(b) If T is an isometry but not onto, then T* fails SVEP. For T* is onto but not 1-1 (since T has closed range)

(a) If T has SVEP, then
$$\sigma_{\alpha}(T^*) = \sigma(T^*) = \sigma(T)$$

Proof: (a) Always have $\sigma_{\alpha}(T^{*}) = \sigma(T^{*})$. Suppose $\lambda \in \sigma(T^{*}) = \sigma(T)$ but $\lambda \notin \sigma_{\alpha}(T^{*})$. Then

for some m, i.e. $\lambda - T^*$ is 1-1 and has closed range. Therefore, $\lambda - T$ is onto. But $\lambda \in \sigma(T)$, so $\lambda - T$ is not invertible. Hence $\lambda - T$ is not 1-1 (since it is onto) and so T fails SVEP Γ

(b) IF $\lambda \in \sigma(T)$, $\lambda \notin \sigma_{\alpha}(T)$, then $R(\lambda - T)$ is closed and $\lambda - T$ is injective. Then $\lambda - T^*$ is onto, so $\lambda \in \rho(T^*)$ by

Ø

8.1.10 Remarks

- (a) IF Thas SVEP, at has SVEP for all scalers a
- (b) The sum of two operators with SUEP need not have SUEP
- (c) The set of operators with SVEP 15 not normed closed

(e.g.
$$\mathcal{X} = l_2(\mathbb{Z})$$
 $T_k e_n = \begin{cases} e_{n-1} & n \neq 0 \\ \frac{1}{k}e_1 & n = 0 \end{cases}$ Then $\sigma(T_k) = \{|\lambda| = 1\}$

$$\Rightarrow T_k \text{ has SVEP}$$

- (d) The set of operators with SUEP is not open
- (e.g. O has SUEP but in any nobled of O there is a shift operator (which fails SUEP)).
- (e) IF T has SUEP and K is compact, then T+K may fail SVEP. IF t fails SVEP and K is compact, then T+K may have SUEP (see example in (c))
- (f) If Q is quasi-nilpotent, then either both T and T+Q have SUEP, or both fail SVE;

4/11 SPECTRAL THEORY

- (g) If $f \in \mathcal{F}(T)$ and f is non-constant on every nobel of $\sigma(T)$ then f(T) has svep iff T has svep
 - (h) The set of operators without SVEP has a non-empty open set
- 8.1.12 THEOREM (Vasilescu) Let (Tn) has SVEP. Suppose Tn -> T in B(X) and TnT = TTn Vn. Then T has SVEP.
- 8.1.13. THEOREM. Let $T_j \in \mathcal{B}(\mathfrak{X}_j)$ j=1,2. Then $T_1 \oplus T_2$ has SVEP IFF each T_i has SVEP

[See Erdelyi-Lange, pp9410]

§8.2 The Local Spectrum

Let $T \in B(X)$, $x \in X$. The function $\lambda \mapsto R(\lambda;T)x$ Is analytic for $\lambda \in p(T)$. Then

(*)
$$(\lambda - T) \xi(x) = x \quad \forall \lambda \in \rho(T)$$

If Ξ is defined on some some $\Omega = \emptyset$ with $\rho(T) = \Omega$ and which satisfies (*), we call Ξ an analytic extension to Ω of $R(\cdot;T)x$. $\forall \lambda \in \Omega$

If T has SVEP, then any two analytic extensions of R(·; T) x must agree on the intersection of their domain, for

8.2.1. LEMMA: If T has SVEP and $x \in X$, then there exists a unique analytic extension of $R(\cdot;T)x$ whose domain is maximal (under set inclusion) $[(f_X, \Omega_X) \text{ ext. , let } \Omega := U\Omega_X]$

8.2.3. DEFINITION: IF T has SVEP and XEX, denote the unique maximal analytic extension of R(·; T) x by

or b)
$$\overset{\sim}{\chi}(\cdot)$$

or c) $\overset{\sim}{\chi}(\cdot;T)$

and call it the local resolvent for x. Denote the (open) domain of \widehat{x} by $\rho_{\tau}(x)$ or $\rho(x;\tau)$ and call this domain the local resolvent set at x. Let $\sigma_{\tau}(x)$ or $\sigma(x;\tau)$ be the complement of the local resolvent set. This is called the local spectrum for x. Note that $\sigma_{\tau}(x) \subset \sigma(\tau)$ is closed and compact.

8.2.4 Examples

(a)
$$X=0$$
. $R(\lambda_j T) x=0 \ \forall \lambda \le 0$ $\chi(\lambda)=0 \ \forall \lambda \in \mathbb{C}$

$$P_T(x) = \mathbb{C}$$

$$\sigma_T(x) = \emptyset$$

(b) Let
$$Tx_0 = \lambda x_0$$
. Let $x_0(\lambda) := \frac{1}{\lambda - \lambda_0} x_0$, $\lambda \neq \lambda_0$
Note that

$$(\lambda - T) \overset{\sim}{\chi_o}(\lambda) = \frac{1}{\lambda - \lambda_o} (\lambda - T) (\chi_o)$$

$$= \frac{1}{\lambda - \lambda_o} \left[(\lambda - \lambda_o) \chi_o + (\lambda_o - T) \chi_o \right]$$

for every
$$\lambda \in \mathcal{C} \setminus \{\lambda_0\}$$
. Hence $\sigma_{\mathcal{T}}(x_0) = \{\lambda_0\}$ (As we will see later)

Claim:
$$\sigma(T) = [o,1] = \sigma_r(T)$$
. $R(\lambda;T) \times (t) = \frac{1}{\lambda-t} \times (t)$
[So $\sigma_p(T)$ is empty \Rightarrow T has EVEP] $\forall \lambda \notin [o,1]$

Range of λ -T are functions which vanish at λ . This is not dense in C[0,1] so $\overline{\sigma}(T) = \overline{\sigma}_{T}(T)$.

Let
$$X_0(t) = 0$$
 for $\frac{1}{2} \le t \le 1$. If $\frac{1}{2} < \lambda \le 1$, then take

$$\sum_{i=1}^{\infty} x^{o}(y) = 0$$

$$\sum_{i=1}^{\infty} x^{o}(f) = C[o^{i}]$$

Note o(x0) < [0,1/2]

4/15 SPECTRAL THEORY

8.2.5 DEFINITION: IF H = C, define

 $\mathcal{X}_{T}(H) := \{ x \in \mathcal{X} : \exists \mathcal{S}_{x} \text{ analytic on } C | H \text{ s.t.}$ $(\lambda - T) \mathcal{S}_{x}(\lambda) = x \quad \forall \lambda \in C | H \}$

If T has SVEP, then $X_T(H) = \{x \in X : \sigma_T(x) \in H\}$. Call $X_T(H)$ the spectral manifold corresponding to H.

8.2.6 THEOREM: Let T have SVEP

(a) If $a \neq 0$, then $\sigma_{+}(ax) = \sigma_{+}(x)$

(b) 0-(x+y) < 0-(x)+0-(y)

(c) $\sigma_{T}(x) = \phi \iff x = 0$

(a) $AT = TA \Rightarrow \sigma_T(Ax) = \sigma_T(x)$

(e) If $\lambda \in \rho_{\tau}(x)$, then $\sigma_{\tau}(\tilde{\chi}_{\tau}(\lambda)) = \sigma_{\tau}(x)$

(t) $\sigma(\tau) = \bigcup \sigma_{\tau}(x)$

Xe X

and so $\sigma_T(ax) \subset \sigma_T(x)$. But then

$$\sigma_{T}\left(\frac{1}{\alpha}(\alpha x)\right) < \sigma_{T}(\alpha x) < \sigma_{T}(x)$$

IJ

(b) Let
$$\lambda \in \rho_{\tau}(x) \cap \rho_{\tau}(y)$$
. Then
$$(\lambda - \tau) (\hat{x}(\lambda) + \hat{y}(\lambda)) = x + y$$

$$\hat{x}(\cdot) + \hat{y}(\cdot) \subset \hat{x} + \hat{y}(\cdot), so \rho(x) \cap \rho(y) = \rho_{\tau}(x + y). Idence$$

$$\sigma_{\tau}(x + y) = \sigma_{\tau}(x) + \sigma_{\tau}(y)$$

(c)
$$X=0$$
 clear Conversely, let $\sigma(x)=\phi$. Then $X(\cdot)$ is defined for all $\lambda \in C$. IF $|\lambda| > ||T||$, $X(\lambda) = R(\lambda; T) \times \to 0$ as $|\lambda| \to \infty$. Hence $X(\cdot)$ is entire and bounded, so it must be constant. Since $X(\lambda) \to 0$, $X(\lambda) = 0$ $\forall \lambda$. Therefore

$$X = (\lambda - T) \widetilde{x}(\lambda) = 0$$

(d)
$$(\lambda - T) \tilde{\chi}(\lambda) = \chi \quad \forall \lambda \in \rho_{T}(x)$$

$$\Rightarrow A(\lambda-T) \widetilde{\chi}(\lambda) = A\chi \quad \forall \lambda \in P_{\tau}(x)$$

$$\Rightarrow$$
 $(\lambda - T) A_X^{\infty}(\lambda) = A_X \quad \forall \lambda \in C_T(x)$

$$\Rightarrow \quad A_{x}^{x}(\cdot) \subset A_{x}^{x}(\cdot)$$

$$\Rightarrow$$
 $\rho_{T}(x) < \rho_{T}(Ax)$

$$\Rightarrow$$
 $\sigma_{\tau}(\rho_{x}) < \sigma_{\tau}(x)$

(e) Let ho∈ PT(x), Define

$$g(\lambda) := \begin{cases} -\frac{\chi}{\lambda}(\lambda) - \frac{\chi}{\lambda}(\lambda_0) & \lambda \in \mathcal{C}^{\perp}(x), \lambda \neq y_0 \\ -\frac{\chi}{\lambda}(\lambda_0) & \lambda \in \mathcal{C}^{\perp}(x) \end{cases}$$

Then g is analytic in PT(x)

$$(\lambda - T)g(\lambda) = \frac{\chi - (\lambda - \lambda_0) \chi(\lambda_0) - \chi}{-(\chi - \lambda_0)} = \chi(\lambda_0)$$

Hence

$$(\lambda_0 - T) q(\lambda_0) = \tilde{\chi}(\lambda_0)$$

$$\Rightarrow$$
 $q(\cdot) = \underset{\times}{\sim} (h)(\cdot)$

$$\Rightarrow \rho(x) < \rho(\tilde{\chi}(\lambda))$$

$$\Rightarrow$$
 $\sigma(\chi(\lambda_0)) \subset \sigma(x)$

Let z = x(ho).

$$(\lambda - T) \widetilde{Z}(\lambda) = Z = \widetilde{X}(\lambda_0) \quad \forall \lambda \in P_T(z)$$

$$= (\lambda_o - T)(\lambda - T) \widetilde{z}(x) = (\lambda_o - T) z = x$$

$$X = [(\lambda)^{2} (T - \sigma \lambda)] (T - \lambda) \in X$$

$$\Rightarrow \rho_{T}(z) \subset \rho_{T}(x)$$

$$\Rightarrow \rho_{T}(x) < \rho_{T}(z) = \rho_{T}(\tilde{\chi}(\lambda_{0}))$$

$$(\lambda_o - \tau) \overset{\sim}{\chi}_{\tau} (\lambda_o) = \chi$$

But λ_0 -T has SVEP, so λ_0 -T is invertible. Therefore $\lambda_0 \in \rho(T)$ 1.e. $\lambda_0 \notin \sigma(T)$. Hence $\sigma(T) \in \bigcup \sigma_T(x)$

8.2.7. THEOREM: Let T have SVEP, HCC.

(a) $\mathcal{X}_{T}(H)$ is a linear manifold in \mathcal{X} and is T-hyperinvariant (it is invariant under any H with H = TH)

(b) $\overline{\mathcal{X}_{T}(H)}$ is a subspace and is T-hyperinvariant

(c) $\mathfrak{X}_{\mathsf{T}}(\mathsf{H})^{\perp} = \mathfrak{X}_{\mathsf{T}}(\mathsf{H})^{\perp}$ is T^{R} -hyperinvariant.

Proof. All Follows From previous theorem.

of sets in C, then

$$\mathcal{X}_{T}(\bigcap_{d}H_{d}) = \bigcap_{d}\mathcal{X}_{T}(H_{d})$$

4/17 SPECTRAL THEORY

Note - $X_T(H) = \{x \in X : \sigma_T(x) \in H\}$ may not be closed.

8.2.9. THEOREM: Let T have SVEP. Let C be a scroc around of(x). Then for any polynomial p

$$\rho(\tau)x = \frac{1}{2\pi i} \int_{C} \widetilde{x}(\lambda) \rho(\lambda) d\lambda$$

Proof Let C'be circle of diameter 11711+1. Then

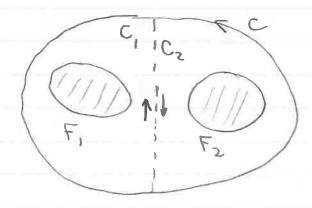
$$\rho(T)x = \frac{1}{2\pi i} \int R(\lambda;T) \times p(\lambda) d\lambda$$

$$\Rightarrow p(T)x = \frac{1}{2\pi i} \int X(\lambda) p(\lambda) d\lambda$$

$$C'$$

$$\Rightarrow \rho(T)_{X} = \frac{1}{2\pi i} \int_{C} \tilde{\chi}(\lambda) \rho(\lambda) d\lambda \qquad (C \sim C')$$

8.2.10 THEOREM: Let Thas SVEP and let $\sigma_T(x) = F_1 \cup F_2$ where F_1, F_2 are closed and $F_1 \cap F_2 = \emptyset$. Then x has a unique decomposition $X = X_1 + X_2$ with $\sigma_T(x_1) = F_2$.



$$X = \frac{1}{2\pi i} \sum_{c} \tilde{\chi}(\lambda) d\lambda = \frac{1}{2\pi i} \int_{c} \tilde{\chi}(\lambda) d\lambda + \frac{1}{2\pi i} \int_{c_{2}} \tilde{\chi}(\lambda) d\lambda$$

$$= \chi_{1} + \chi_{2}$$

Show $\sigma_{\tau}(x_i)$ is inside C_i ($\Rightarrow \sigma_{\tau}(x_i) \in F_i$ since C_i anbitrary) Let μ be outside C_i .

Claim:
$$\mu \in P_{\tau}(x_1)$$
 Define
$$g(\mu) := \frac{1}{2\pi i} \int_{C} \frac{\tilde{\chi}(\lambda) d\lambda}{\mu - \lambda}$$

Then

$$(\mu-T)g(\mu) = \frac{1}{2\pi i} \left(\frac{(\mu-T)\tilde{\chi}(\lambda)}{\mu-\lambda} d\lambda \right)$$

$$= \frac{1}{a\pi i} \int_{C_1} \frac{(\mu - \lambda) \tilde{\chi}(\lambda) + \chi}{\mu - \lambda} d\lambda$$

$$= \frac{1}{2\pi i} \sum_{C_i} \tilde{\chi}(\lambda) \partial \lambda + \frac{1}{2\pi i} \left(\sum_{C_i} \frac{1}{\lambda - \lambda} \partial \lambda \right) \chi$$

$$= \chi_1 + 0 = \chi_1$$

This shows the claim.

For uniqueness, if x=x1+x2=y1+y2 with o:(yi)=Fi,

thon

883 RESTRICTIONS AND QUOTIENTS

Suppose y is T-invariant (T(y)=y). We regard Tly as in B(y).

Also, T induces an operator in $\frac{x}{y} - \frac{x}{y} = \frac{x}{y}$ $T^{y}(x+y) := Tx+y$

Then ||Ty || \le ||T|| Call Ty the operator induced in \(\frac{2}{3}\)/y, or the coinduced operator or quotient operator of T.

8.3.1. Examples:

(a) Let
$$X = C^2$$
 $T(a, \beta) = (a, a\beta)$
 $T(T) = \{1, 2\}$
Let $Y = \{(x, 0) : x \in \mathcal{E}\}$ $T(T|y) = \{i\}$
 $T(T|y) = T(T)$
Let $X = \{(0, y) : y \in \mathcal{E}\}$ $T(T|X) = \{2\}$

73= T/4

(b)
$$\mathcal{X} = \mathcal{I}_{\infty}(\mathbb{Z})$$
 $S(e_n) = e_{n+1}$ (Right shift)
$$\sigma(S) = \{|\lambda| = 1\}$$
Let $\mathcal{Y} = \mathcal{B}_{p} \{e_n : n \ge 1\}$

$$\sigma(S|\mathcal{Y}) = \{|\lambda| \le 1\}$$

$$So \ \sigma(S|\mathcal{Y}) \not= \sigma(S)$$
 [Note $\sigma(S) \in \sigma(S|\mathcal{Y})$]
$$(c) \mathcal{X} = \mathcal{C}^{2} \oplus \mathcal{I}_{\infty}(\mathbb{Z})$$
 $R = T + S$

$$\sigma(R) = \{|\lambda| = 1\} \cup \{a\}$$

$$\sigma(R|\mathcal{Y}_{\alpha} \oplus \mathcal{Y}_{b}) = \{|\lambda| \le 1\}$$

Note $\sigma(R) \neq \sigma(R|Y_b \oplus Y_b) \neq \sigma(R)$

(d) If
$$y = x$$
 is T-invariant and $Tx = y$, then $Ty = 0$
Therefore $\sigma(Ty) = 903$

Left shift
$$S(x_1, x_2, x_3, ...) = (x_2, x_3, x_4, ...)$$
 $||S|| \le |$

$$(\lambda - S)(x_{11}x_{21}...) = (\lambda x_{1}-x_{21} \lambda x_{2}-x_{31}...) \lambda x_{n}-x_{n+11}...)$$

If
$$x_{\lambda} := (1, \lambda, \lambda^2, \dots)$$
 belongs to the space, then

$$S_{X_{\lambda}} = \lambda x_{\lambda}$$

and so Xx is an eigenvector corresponding to)

$$\sigma(S) = \{|\chi| \leq 1\} \qquad \sigma_p(S) \supset \{|\chi| < 1\}$$

Now for h = 0

$$(\lambda - S) \left(\frac{1}{\lambda^n}, \frac{1}{\lambda^{n-1}}, \dots, \frac{1}{\lambda}, 0, 0, \dots \right) = (0, 0, \dots, 0, 1, 0, \dots) = e_n$$

$$\sum_{n \neq n} A^{n+1} \operatorname{spat}$$

Similarly, for
$$|\lambda| < 1$$

 $[n+h] = pat$
 $(\lambda - S)(0, ..., 0, -1, -\lambda_1 - \lambda_2, ...) = (0,0,...,0,1,0,...)$

$$(\lambda - S)(\frac{1}{\lambda^n}, \dots, \frac{1}{\lambda}, 1, \lambda, \lambda^2, \dots) = 0$$

for all O<12/<1

Let $X_n := \{(X_1, X_2, ..., X_n, 0, 0, ...)\}$. X_n is invariant under S. $\sigma(S|X_n) = \{0\}$ since $S|X_n$ nilpotent.

$$\mathcal{Z}_{n} = \left\{ (x, x, \dots, x, x_{n}, x_{n}, x_{n+2}, \dots \right\}$$

$$\mathcal{Z}_{n} \approx S \quad \sigma(S^{\chi_{n}}) = \sigma(S)$$

T has SVEP.

Let $y_n = \{(0,0,...,0,x_n,x_{n+1},x_{n+2},...)\}$ Tinvariant $T|y_n \approx T$ so $\sigma(T|y_n) = \sigma(T)$.

BILATERAL SHIFT

$$T(..., x_{-1}, (x_0), x_1, ...) = (..., x_{-2}, (x_{-1}), x_0, ...)$$

$$X/y = \{(..., x_2, x_1, (*), *, *, ...)\}$$

Note Ty fails SVEP

MULTIPLICATION

$$X = C[0,1]$$
 $T_X(t) = t_X(t)$

$$R(\lambda, T)_{X}(t) = \frac{1}{\lambda - t} X(t) \quad \lambda \notin [0,1]$$

Hence
$$\sigma(\tau) = [0,1] = \sigma_r(\tau)$$

$$\frac{1}{2} (\lambda \cdot \tau) \subset [0,1] \text{ not dense if } \lambda \in [0,1]$$

(If
$$X=B[0,1]$$
, then $\sigma_p(T)=[0,1]$,
Let $Y=\{x\in C[0,1]:x(E)=0 \text{ for } \forall a\leq E\leq 1\}$. Y is T -invariant.

Proof (a) $\lambda \in \rho(T|Y) \cap \rho(T^3)$. To show $\lambda \in \rho(T)$ To this end, if $(\lambda - T)X = 0$, then $(\lambda - T^3)[X] = [0]$, and so [X] = [0]Since $\lambda \in \rho(T^3)$. Hence $X \in \mathcal{Y}$. But then $(\lambda - T^3)(X) = 0$ and so X = 0Since $\lambda \in \rho(T^3)$, Hence $\lambda - T$ is 1 - 1.

Now if $x \in \mathcal{X}$, $\exists [z] s.t. (\lambda-T)[z] = [x]$. Then $(\lambda-T)z - x \in \mathcal{Y}$, and so $\exists w \in \mathcal{Y} s.t$.

Hence $X = (\lambda - T)(z - W)$, and so $\lambda - T$ is onto Therefore $\lambda - T$ is bijective, so $\lambda \in \rho(T)$.

4/22 SPECTRAL MEASURE

Proof of (ii) Suppose $\lambda \in \rho(\tau) \cap \rho(\tau^{\vee})$. Then $\lambda - \tau$ is injective so $\lambda - \tau$ by is injective. Let $y \in \mathcal{Y}$. Then $\exists x \in \mathcal{X} \ z + y = (\lambda - \tau) \times 1$ Hence

$$[x](y+-y)=[0]$$

But $\lambda-T^y$ is injective, so [x]=[0], i.e. $x\in \mathcal{Y}$. Therefore $y=(\lambda-T)y$ x so $\lambda-T$ by is onto. Hence $\lambda-T$ by is invertible, i.e. $\lambda\in\rho(T)$

(iii) Suppose $\lambda \in \rho(T) \cap \rho(T|y)$. Suppose $(\lambda - T^{y})[x] = 0$, 1.e. $[(\lambda - T)x] = 0$. Then $(\lambda - T)x \in y$. Since $\lambda - T|y$ is onto, $\exists y \in \mathcal{N} \text{ s.t.}$

$$(\lambda - T|y)y = (\lambda - T)x$$

But then $(\lambda - T)(y - x) = 0$ and $\lambda - T$ is 1 - 1, so $x = y \in Y$. Hence [x] = 0, so $\lambda - TY$ is 1 - 1. Now suppose $[x] \in \mathscr{E}/y$. Then $\exists v \in \mathscr{X} = .t$. $(\lambda - T)v = x$, and so

$$(\lambda - T^{y})[v] = [x]$$

Therefore $\lambda - T^{y}$ is onto. Hence $\lambda \in \rho(T^{y})$

8.3.3. THEOREM: Let T∈B(X), Y T-Invariant. TFAE for λ∈ P(T)

(i)
$$\lambda \in \varrho(T|y)$$

(iii)
$$\lambda \in p(T^3)$$

Proof (i) \Rightarrow (ii) If $\lambda \in \rho(T|y)$, then $\lambda - T|y$ is 1-1 onto y and so $(\lambda - T|y)^{-1}$ is 1-1 of y onto y. But

$$R(\lambda;T)(y = (\lambda - T|y)^{-1}$$

and so R(1;T) y < y

 $(ii) \Rightarrow (iii)$ If $R(\lambda;T)y \in Y$, then $\lambda \in P(T|y)$ and so $[R(\lambda;T|y) = R(\lambda;T)]y$

 $\lambda \in \rho(T|y) \cap \rho(T) < \rho(T|y)$

by (iii) of theorem 8.3.2.

(iii)
$$\Rightarrow$$
 (i). Then $\lambda \in \rho(T^y) \cap \rho(T) \in \rho(T|y)$.

Let $\rho_{\infty}(T)$ be the unbounded component of $\rho(T)$. Let

$$\sigma_{\infty}(T) := \mathcal{C}/\mathcal{C}_{\infty}(T)$$

("full spectrum" - fill in holes of o(T))

8.3.4. Corollary: If y is T-mvariant, then $\sigma(T|y) = \sigma_{\infty}(T)$ and $R(\lambda;T|y) = R(\lambda;T)|y|$ for $\lambda \in p(T|y) \cap p(T)$

Proof. Let yell. IF IXI > 11T11, then

$$R(\lambda;T)y = \sum_{n=0}^{\infty} \frac{T^n y}{\lambda^{n+1}} \in \mathcal{Y}$$

Claim: R(X;T) y ely for all he Pro(T). Let X* EX* be such that

Then X* R(X;T)y=0 YX>11TH. Idence X*R(X;T)y=0 YX = Pro(T) Since Pro(T) is connected. By Hahn-Banach theorem,

(since above holds for all X* E X* which vanishes on M). Hence

and so lep(T/y), i.e. Poo(T) = p(T/y).

8.3.5. THEOREM (Scoggs) Lot y be T-invariant. If G

Gnp(T/y)=0

or 6 = p(T/y)

Proof IF $Gnp(T|y) \neq \emptyset$, choose $\lambda_1 \in Gnp(T|y)$. IF $G \not\leftarrow p(T|y)$, $\exists \lambda_2 \in Glp(T|y)$. Since G is pathwise connected, $\exists \lambda_3 \in Gn \ \partial \sigma(T|y)$. Then $\lambda_3 \in \sigma_a(T|y) < \sigma_a(T) < \sigma(T)$. But $\lambda \in p(T)$ (A. Hence $G \subset p(T|y)$

4/24 SPECTRAL THEORY

8.3.6 DEFINITION: (Kariotis) Let $T \in B(X)$ and Y be T-invariant. We say that Y is a ν -space (has the spectral inclusion property SIP) if

0 (1/y) < 0(T)

8.3.7. THEOREM: Let TEB(X), Y T-invariant. TFAE

- (i) 2(1/N) = 2(1)
- (ii) $\sigma(T^{\gamma}) \subset \sigma(T)$
- (iii) R(X;T) Y = Y XE p(T)
- (iv) 0(T) = 0(+/y) v o(Ty)

Proof. (i) \Rightarrow (ii) $\sigma(T^{y}) = \sigma(T) \cup \sigma(T^{y}) = \sigma(T)$ (ii) \Rightarrow (i) $\sigma(T^{y}) = \sigma(T) \cup \sigma(T^{y}) = \sigma(T)$ (i) \Leftrightarrow (iii) Theorem 8.3.3.

8.3.8 <u>Corollar?</u>: (a) If $\lambda \in \rho(T)$ then $\lambda \in \sigma(T^{y}) \Leftrightarrow \lambda \in \sigma(T^{y})$ (b) If G is a bounded component of $\rho(T)$, then either $G \circ \sigma(T^{y}) = \phi$ or $G \subset \sigma(T^{y})$ (c) $\sigma(T^{y}) = \sigma_{m}(T)$ 8.3.9. Corollar: If y is T-hyperinvariant (invariant under any operator which commutes with T), then y has SIP

Proof. By 8.3.7 (iii)

8.3.10. Corounny: IF $\sigma(\tau)$ does not separate the plane, then every T-invariant space has SIP and $\sigma(\tau) = \sigma_{\infty}(\tau)$

Proof. By 8.3.4 (since in this case Par(T) = p(T))

Other examples of spaces with SIP $(T \in B(X))$

- (a) y = EX where $E^2 = E$ and TE = ET
- (b) If $F \in \mathbb{C}$ is closed and $\mathfrak{X}_{T}(F)$ is closed, then $\mathfrak{X}_{T}(F)$ has SIP
 - (c) If y is a "spectral maximal space", then y has SIP
 - (d) IF o(T/y) is nowhere dense, then y has SIP
- plane, then every T-muariant subspace of It has SIP

8.3.11. THEOREM (a) Let X = Y & Z, where Y and Z are T-invariant. Then

$$\sigma(T) = \sigma(T|y) \cdot \sigma(T|Z)$$

$$\sigma(T^{Z}) = \sigma(T|y)$$

$$\text{Prod.} \quad Z \simeq Z|y \text{ and } y \simeq Z|Z$$

$$T^{Z}[x]_{Z} = [Tx]_{Z} = [Ty+Tz]_{Z} = [ty]_{Z}$$

$$\text{(to be continued)}$$

§8.4 Local Spectra, restriction, and quotients

8.4.1. THEOREM: Let T has SVEP and y be T-invariant.

- (a) Tly has SUEP in B(y)
- (b) $\sigma_{T}(y) = \sigma_{T|y}(y) \quad \forall y \in N$
- (c) IF yey, he e try (y) = et(y), then

 Y(h) = YTM (y)

Proof. (a) Suppose 8: 2 - y is analytic and

(1-T/y) 5(1) =0 Y/en

Then $(\lambda - T) \xi(\lambda) = 0$, treating ξ with values in ξ . Smoe ξ has ξ and ξ and ξ or ξ has ξ and ξ and ξ are ξ has ξ and ξ are ξ and ξ are ξ and ξ are ξ and ξ are ξ are ξ are ξ and ξ are ξ are ξ are ξ and ξ are ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ and ξ are ξ are ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ and ξ are ξ are ξ are ξ and ξ are ξ and ξ are ξ and ξ are ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ are ξ are ξ and ξ are ξ are ξ are ξ and ξ are ξ and ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ and ξ are ξ are ξ are ξ and

(b) Suppose hoe PTIY (y). If: noted of ho -> y st.

(x - Tly) 5(x)=y

 $\Rightarrow (\lambda - T) + \xi(\lambda) = y$

=> f = y_T

 $\Rightarrow \lambda_0 \in P_{\tau}(y)$

(c) Note that

and so $\hat{y}_{T}(y)$ agrees with $\hat{y}_{T}(y) = (\lambda - T) \hat{y}_{T}(y)$

5-140 = 0 (T/y) = 0 (T/y) = 5.4.8 5-(40) = 5-14(50)

Let
$$\mathcal{X} = loo(Z) \oplus loo(N)$$

 $T = right shift in both subspaces$
 $\mathcal{Y} = \{(0,0,...,0,(x_0),x_1,...)\} \oplus \{0\}$

Then $\sigma(T) = \{|\lambda| \le 1\} = \sigma(T|y)$, let

$$y_0 = e \oplus 0$$

$$e \cdot \oplus 0$$

$$e \cdot \otimes (N)$$

Then
$$\sigma_{T}(y_{0}) = [1\lambda 1 = 1]$$
 since $|\lambda| < 1$, $(\lambda - T)[(..., \lambda^{2}, \lambda, (1), 0, 0, ...) \oplus 0] = e_{1} \oplus 0$
However, $\sigma_{TM}(y_{0}) = [1\lambda 1 \le 1]$

4/25 SPECTRAL THEORY

8.3.11 THEOREM

(a) Let
$$X = Y \oplus Z$$
, each T-invariant. Then $X/Z \times Y$ and

$$\sigma(T^{\frac{2}{2}}) = \sigma(T|y)$$
(b) If $X = y + 2$, then $X/Z = y/y = 0$ and
$$\sigma(T^{\frac{2}{2}}) = \sigma((T|y)^{y + 2}) = \sigma_{\infty}(T|y)$$

Proof. (a) Define
$$\Theta: Y \to \mathcal{Z}/Z$$
 by $\Theta y = y + Z$. Now
$$T^{\frac{1}{2}} \cdot \Theta = \Theta \cdot T/Y$$

$$\Rightarrow \Theta^{-1} + \overline{}^{2} \Theta = T/Y$$

Hence Tly and $T^{\frac{2}{3}}$ are similar, so $\sigma(T|y) = \sigma(T^{\frac{2}{3}})$ (b) Define $w: \frac{y}{z}, -\frac{x}{z}$ by

Then $||w(y+z_1)|| = ||y+z_1|| = ||y+z_1||$

Finally,
$$\omega(T|y)^{\frac{2}{2}} = T^{\frac{2}{2}} \omega$$
, so $(T|y)^{\frac{2}{2}}$ and $T^{\frac{2}{2}}$ are similar. Hence

Y is T-Invariant, we say that y is a M-space if

THEOREM: A M-space is a M-space (has SIP)

Proof. By 8.2.6(5)

$$=$$
 $\bigcup \sigma_{T}(x) = \sigma(T)$

8.4.5. THEOREM: Let T have SVEP and Y T-invariant. TFAE

$$(\lambda - T) \frac{1}{2} \frac{1}{2} (\lambda) = y = (\lambda - T | y) \frac{1}{2} \frac{1}{2} \frac{1}{2} (\lambda)$$

$$\Rightarrow (\lambda - T) \, \mathcal{G}_{T}(\lambda) = (\lambda - T) \, \mathcal{G}_{T/Y}(\lambda) = y$$

Hence
$$\sqrt[4]{\tau}(\lambda) = \sqrt[4]{\tau}(\lambda) \in \mathcal{Y} \quad \forall \lambda \in P_{\tau}(y).$$

$$\int_{SV \in P} \nabla dx \, dx \, dx$$

$$(c \Rightarrow b') \equiv \exists f(\lambda) \in \mathcal{Y} \quad \forall \lambda \in \mathcal{C}(\mathcal{Y})$$

$$(\lambda - T | Y) \mathcal{T}_T(\lambda) = (\lambda - T) \mathcal{T}_T(\lambda) = y$$

=)
$$\lambda \in P_{T/Y}(y)$$
 Whenever $\lambda \in P_{T}(y)$

$$\Rightarrow \rho_{\tau}(y) = \rho_{\tau}(y)$$

8.4.6 THEOREM: Let Thave SVEP. IF HCK is such that

X_T(H) = { x \in X : \sigma_T(x) \in H }

is closed, then Ity (H) is a M-space.

Proof. $y \in \mathcal{X}_{T}(H) \iff \sigma_{T}(y) \in H$ By 8.2.6(e), $\sigma_{T}(\mathcal{F}_{T}(\lambda)) = \sigma_{T}(y) \quad \forall \lambda \in (P_{T}(y))$

Hence J_(X) = JET(H) YX = PT(Y). By (c) & 8.4.5, JET(H)

Is a M-space.

8.4.7 THEOREM: Let Thave SVEP, y T-invariant. IF

o(Tly) is nowhere dense, then y is a M-space.

Proof. Let $y \in \mathcal{Y}$, $\lambda \in \mathcal{C}_T(y)$. Since $\varrho(T|y)$ is dense, $\exists \text{ seq } (\lambda n) = \varrho(T|y) \text{ s.t. } \lambda_n \rightarrow \lambda$. By 8.4.1.

yt (An) = ytly (An) ey

Jr(X) ∈ M. Now apply (c) of 84.5.

W

8.4.8 THEOREM: Let $T \in B(X)$ and $\sigma(T)$ nowhere dense in ¢ Then a T-invariant space is a μ -space iff it is a ν -space

Proof: U(T) nowhere dense =) Thus JVEP

o(thy) = o(t) Lhence nowhere dense

8.4.9. THEOREM: Let TEB(X) and let $\sigma(\tau)$ be nowhere dense, and not separating. Then every T-invariant space is a M-space.

4/29 SPECTRAL THEORY

8.4.10 THEOREM: Let T have SVEP and Y T-invariant. If Ty has SVEP, then

$$\sigma_{T_A}([x]) \in \alpha^{\perp}(x)$$

for every x & X. Moreover,

$$[x]_{Ty}(\lambda) = [x_T(\omega)]$$

for all he py(x).

Proof. We know $(\lambda - T) \stackrel{\sim}{x_T} (\lambda) = x$ for all $\lambda \in \rho_T(x)$. Then

$$(\lambda - T^{\gamma}) [\widehat{x}_{T}(\lambda)] = [x]$$

Hence $[x_T(\lambda)] = [x]_{Ty}(\lambda)$ $\forall \lambda \in P_T(x)$ and $P_T(x) \subset P_{Ty}([x])$.

0

Closed Spectral Manifolds

8.4.11 THEOREM: Let Thave SVEP. Let $F \subset C$ be observed and suppose $\mathcal{X}_T(F) = \{x : \sigma_T(x) \subset F\}$ is closed.

(a) XT(F) 15 T-hyperinvariant

(b) $\sigma(T|X_T(F)) = \sigma(T) \cap F$

(c) If $Z = X_T(F)$, i.e. $X_T(F)$ is "spectral maximal"

Proof. (a) If AT = TA and $G_T(x) = F$, then by 8.2.6(d),

 $\sigma_{T}(Ax) = \sigma_{T}(x) < F$

and so $Ax \in \mathcal{X}_{T}(F)$

(b) By 8.4.1 (a), the operator $T_F := T | \mathcal{X}_T(F)$ has SVEP IF $\lambda_0 \neq \sigma(T) \cap F$, then $\mathcal{X}_T(\lambda_0)$ is defined for all $\chi \in \mathcal{X}_T(F)$. The map $x \mapsto \hat{\chi}_T(\lambda_0)$ of $\mathcal{X}_T(F)$ into $\mathcal{X}_T(F)$ (F) (F)

Claim: X-TF: XT(F) -> XT(F) is onto

This is because $(\lambda_0 - T_F) \overset{\sim}{\chi}_{+}(\lambda_0) = \chi \in \overset{\sim}{\mathcal{X}}_{-}(F)$ $(\lambda_0 - T) \overset{\sim}{\chi}_{+}(\lambda_0)$

Since TE has SVEP, it is inverble, so LoEp(TIXE)

(c) IF $\sigma(T|Z) < \sigma(T|X_T(F)) < F \cap \sigma(T)$, then if $z \in Z$ by 8.4.1.(b)

Hence ZE FT(F). Hence Z = FT(F).

V

8.4.12 DEFINITION: A T-Invariant subspace y is T-spectral maximal if for any T-invariant Z with $\sigma(T|Z) = \sigma(T|Y)$ it follows that 2 = y

8.4.13. THEOREM: Let Thave SUEP, y T-invariant, and let F := o(Tly).

(a) yc XT(F)

(b) If y is spectral maximal and if XT(F) is closed, then y = XT(F)

Proof (a) Let yell, so

07(y) < 07/y (y) < 0(7/y) = F

Honce ye JET (F), i.e. y c JET (F)

(b) IF X-(F) is closed, by 8.4.11(b)

o(TIX=(F)) = F(T) OF = F = O(TIN)

and since y is spectral maximal, we must have $X_T(F) = y$. Hence by (a), $X_T(F) = y$

11

8.4.14 Corollary: Let Thave SVEP and XT(F) be closed for all closed F < C. Then a T-invariant subspace y is T-spectral maximal if and only if y = XT(F) for some closed F < G(T)

 (\Leftarrow) 8.4.13 (b) and 8.4.11 (b)

5/1 SPECTRAL THEORY

8.4.15 DEFINITION: $T \in \mathcal{B}(\mathcal{X})$. A T-invariant subspace y is T-amalytically invariant if for any open $\Omega = \emptyset$ and analytic $S: \Omega \to \mathcal{X}$ with $(\lambda - T) \cdot S(\lambda) \in \mathcal{Y}$ for $\lambda \in \Omega$, then $S(\lambda) \in \mathcal{Y}$

Note: Thas SVEP () for Is T-analytic invariant

8.4.16 THEOREM: Let Thave SVEP. Then every analytic invariant space is a M-space

Proof. By 8.4.5 y is a M-space iff yT(N) e y for all lept(y) But if y is analytic invariant,

$$(\lambda - T) \tilde{y}_{\tau}(\lambda) = y \in \mathcal{Y} \quad \forall \lambda \in P_{\tau}(y)$$

and so y is a m-space.

8.4.17 <u>LEMMA</u>: Let Y = X, $\Omega = C$ open, $\hat{S}: \Omega \to X/y$ analytic. If $\lambda_0 \in \Omega$, then there exists a disk $V(\lambda_0)$ and analytic function $F: V(\lambda_0) \to X$ s.t.

Proof. Let ho & D. Write

$$\hat{\xi}(\lambda) = \sum_{n=0}^{\infty} \hat{\alpha}_n (\lambda - \lambda_0)^n$$

(where $\hat{a}_n \in \mathcal{X}_y$) which converges for $\lambda \in V(\lambda_0) = \{\lambda : |\lambda - \lambda_0| < r\}$ For $n \in \mathbb{N}$, $\exists a_n \in \mathcal{X}$ with $a_n \in \hat{a}_n$ and

 $\|\hat{a}_n\| \le \|a_n\| \le a \|\hat{a}_n\|$

> || ân || 1/n = || an || 1/n = 2 1/n || ân || 1/n

> /m /an/1/n = /m //an/1/n

Let $F(\lambda) := \sum_{n=1}^{\infty} a_n (\lambda - \lambda_n)^n$, which converges for $\lambda \in V(\lambda_n)$ It's clear that

[F(X)]y = ŝ(X)

2

9 is T-analytically invariant and 8.4.18 Corollary: IF in addition, $\Lambda(\lambda-TY)\hat{s}(\lambda)=0$ for $\lambda\in\Omega$, then $F(\lambda)\in Y$ for all $\lambda\in V$.

Proof. $[(\lambda-T)F(\lambda)] = (\lambda-T)[F(\lambda)] = (\lambda-T)(\lambda) = 0$ and so $(\lambda-T)F(\lambda) \in \mathcal{Y} \Rightarrow F(\lambda) \in \mathcal{Y}$ $(\lambda-T)F(\lambda) \in \mathcal{Y} \Rightarrow F(\lambda) \in \mathcal{Y}$ 8.4.19 THEOREM: A T-invariant subspace y is analytically invariant iff TY has SUEP

Proof (\Leftarrow) Suppose T^y has SVEP. Let $S: \Omega \to X$ be analytic with $(\lambda - T) \cdot S(\lambda) \in Y$. Then

 $0 = [(\lambda - T) + (\lambda)]_{y} = (\lambda - T^{y}) [+(\lambda)]_{y}$ $\Rightarrow [+(\lambda)]_{y} = 0 \quad \text{by SVEP}$ $\Rightarrow +(\lambda) \in \mathcal{Y}$

 $f:\Omega \longrightarrow X/y$ be analytic such that

() - +3) \(\xi \) \(\chi \) \(

By 8.4.17 $\exists F: V(\lambda_0) \longrightarrow \mathcal{X}$ z.t. $[F(\lambda)] = \hat{S}(\lambda)$. By the corollary, $F(\lambda) \in \mathcal{Y}$ and so

 $\hat{S}(\lambda) = [F(\lambda)] = 0$

for all LeV(Lo), Hence \$(L)=0 YLE D.

8.4.20 LEMMA: Let T have SVEP, XEX. Then

$$\forall \lambda_0 \in \mathbb{C}$$
, $\sigma_T((\lambda_0 - T)_X) \subset \sigma_T(x) \subset \sigma_T((\lambda_0 - T)_X) \cup \{\lambda_0\}$

Proof. First inclusion easy since λ_0 -T commutes with T. For second inclusion, let $y:=(\lambda_0-T)x$. If $\lambda\neq\lambda_0$, $\lambda\in P_+(y)$, let

$$g(\lambda) := \frac{1}{\lambda_0 - \lambda} \left(\Im_{\tau}(\lambda) - X \right)$$

Then

$$(\lambda - T) g(\lambda) = \frac{1}{\lambda_0 - \lambda} (y - (\lambda - T)x)$$

$$= \frac{1}{\lambda_0 - \lambda} ((\lambda_0 - T)x - (\lambda - T)x)$$

$$= x$$

Hence P_(y)/{210} = P_(x)

2

8.4.21 THEOREM: Let T have SVEP and let $X_T(F)$ be closed, $y \in X_T(F)$. Then for any $x \in X$ s.t. $(\lambda - T)x = y$, $x \in X_T(F)$.

Proof. $\sigma(T|X_T(F)) \subset F$, Case 1: $\lambda \in F$. By the preceding bernma

and so xe XT(F)

() -T) y () = y

 $\Rightarrow (\lambda - T)(x - \hat{y}_T(\lambda)) = 0$

 \Rightarrow $X - \hat{y_T}(\lambda) = 0$ (Since T has SVEP)

 $\Rightarrow \sigma_{T}(x) = \sigma_{T}(\hat{y}_{T}(x)) = \sigma_{T}(\hat{y}) \in F$

and so $X \in \mathcal{F}_{+}(F)$.

8.4.22 CORDLARY: IF Thas SVEP and if $\mathfrak{X}_{T}(F)$ is closed, then $\mathfrak{X}_{T}(F)$ is T-analytically invariant. Thus $\mathfrak{X}_{T}(F)$ is a μ -space and $T\mathfrak{X}_{T}(F)=:T^{F}$ has SVEP.