Solving $f_{\theta}(r)=0$ for $90<\theta<180$.

The function $f_{\theta}(r)$ for $120<\theta<180$ when $\mathrm{k}=3$ is given by

$$
\begin{align*}
f 3:= & 1+r \cdot \cos (\text { theta })+r^{2} \cdot \cos (2 \text { theta })+r^{3} \cdot \cos (3 \cdot \text { theta }) \\
& +\frac{r^{4} \cdot \cos (2 \text { theta })+r^{5} \cos (3 \text { theta })-1-r \cdot \cos (\text { theta })}{1-r^{2}} \\
& 1+r \cos (\theta)+r^{2} \cos (2 \theta)+r^{3} \cos (3 \theta)+\frac{r^{4} \cos (2 \theta)+r^{5} \cos (3 \theta)-1-r \cos (\theta)}{-r^{2}+1} \tag{1}
\end{align*}
$$

Maple can apply trig identities to this to write it in terms of $\sin (\theta)$ and $\cos (\theta)$.
$\operatorname{simplify}(f 3$, trig $)$

$$
\begin{equation*}
\frac{2 r^{2} \sin (\theta)^{2}(2 r \cos (\theta)+1)}{r^{2}-1} \tag{2}
\end{equation*}
$$

And now we just solve for when this equals 0 .

$$
\text { sol3 }:=\operatorname{solve}(\%=0, r)
$$

$$
\begin{equation*}
0,-\frac{1}{2 \cos (\theta)} \tag{3}
\end{equation*}
$$

The function $f_{\theta}(r)$ for $90<\theta<120$ when $\mathrm{k}=4$ is

$$
\begin{align*}
f 4:= & 1+r \cdot \cos (\text { theta })+r^{2} \cdot \cos (2 \text { theta })+r^{3} \cdot \cos (3 \cdot \text { theta })+r^{4} \cdot \cos (4 \cdot \text { theta }) \\
& +\frac{r^{5} \cdot \cos (3 \text { theta })+r^{6} \cos (4 \text { theta })-1-r \cdot \cos (\text { theta })}{1-r^{2}} \\
1+ & r \cos (\theta)+r^{2} \cos (2 \theta)+r^{3} \cos (3 \theta)+r^{4} \cos (4 \theta) \tag{4}\\
& +\frac{r^{5} \cos (3 \theta)+r^{6} \cos (4 \theta)-1-r \cos (\theta)}{-r^{2}+1}
\end{align*}
$$

simplify (f4, trig)

$$
\begin{equation*}
\frac{2 r^{2} \sin (\theta)^{2}\left(4 r^{2} \cos (\theta)^{2}+2 r \cos (\theta)-r^{2}+1\right)}{r^{2}-1} \tag{5}
\end{equation*}
$$

sol4 $:=$ solve $(\%=0, r)$

$$
\begin{equation*}
0, \frac{-\cos (\theta)+\sqrt{-3 \cos (\theta)^{2}+1}}{4 \cos (\theta)^{2}-1},-\frac{\cos (\theta)+\sqrt{-3 \cos (\theta)^{2}+1}}{4 \cos (\theta)^{2}-1} \tag{6}
\end{equation*}
$$

We have to make sure that we take the correct zero where r is positive. We can check that the third solution is the one we want by graphing it. (You can also show that for $90<\theta<120$, the numerator in solution 3 is positive while the denominator is negative since $-\frac{1}{2}<\cos (\theta)<0$. So multiplying the fraction by -1 will produce a positive number.)
sol4[3]

$$
\begin{equation*}
-\frac{\cos (\theta)+\sqrt{-3 \cos (\theta)^{2}+1}}{4 \cos (\theta)^{2}-1} \tag{7}
\end{equation*}
$$

$\operatorname{plot}\left(\operatorname{sol} 4[3]\right.$, theta $\left.=\frac{\mathrm{Pi}}{2} . . \frac{2 \mathrm{Pi}}{3}\right)$

