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Solving Separable Differential Equations 
 

• When solving for the general solution, have we found  all solutions? 
• What is the domain of a particular solution? 

 

Example: 2dy y
dx

=  

 

By separating variables and integrating, we find the general solution is 1y
x C
−

=
+

. But there is 

another solution, y = 0, which is the equilibrium solution. No value of C will give this solution. 
We “lost” the solution y = 0 when we divided by  while separating variables. 2y
 

Moral: When solving ( ) ( )dy g y h x
dx

= , always check first for equilibrium solutions satisfying 

 before separating variables. ( ) 0g y =
 
The particular solution that satisfies the initial condition 

 is (0) 1y =
1

1
y

x
=

−
 as sketched in the slope field to the 

right. The solution becomes unbounded as 1x −→  and so the 
solution to the initial value problem exists only for the 

interval 1x−∞ < <  even though the function 1( )
1

f x
x

=
−

 has 

domain  The solution to the initial value problem c
jump over the vertical asymptote. 

1.x ≠ annot 

 
 

Example: 21 ,   ( )dy y y
dx

= + π = 0  

 
Separating variables and integrating gives 1tan ( ) .y x C− = +  Using the initial condition, 
 

1 10 tan (0)         tan ( )C C y x− −= = π+ ⇒ = −π ⇒ = −π  
 

But the range of the arctangent function is ,
2 2
π π⎛

⎜  and so 

we must have 

⎞− ⎟
⎝ ⎠

2 2
xπ π
− π <− < . Thus the domain of the 

solution to this initial value problem is the interval 
3

2 2
xπ

< <
π , which is consistent with the sketch of the 



solution in the slope field. The solution can be rewritten as tan( )y x= − π , or just , for tan( )y x=
3

2 2
xπ

< <
π  even though the domain of the function ( ) tan( )f x x=  is (2 1) ,

2
nx + π

≠  n an integer. 

The particular solution to the initial value problem cannot jump over either vertical asymptote. 
 
 

Example: dy x
dx y

= ,  ( 3) 2y − = −

Separating variables and integrating gives 2 21 1
2 2

y x C= +  or 

. The initial condition gives 2 2y x K= + 5K = − . Since the 
initial y-value is negative, the solution to the initial value 
problem is 2 5y x= − − . But what is the domain? This 
function consists of two branches of the hyperbola in the third 
and fourth quadrants, but the solution to the initial value 
problem consists only of the branch with domain 5.x < −  So 
in solving this differential equation two choices had to be made, both based on the initial 
condition: one choice for which sign to take for y with the square root, and one choice about 
which interval for the domain to take to satisfy 2 5 0x − > . Also notice that 5x = −  is not in the 
domain since the differential equation is not defined when y = 0 and the solution is not 
differentiable at 5x = − . 
 
 

Example (2006 AB 5): 1 , 0dy y x
dx x

+
= ,≠  with ( 1) 1y − =  

 
The general solution for this differential equation is 

. The domain of a solution cannot contain 1y Cx= − 0,x =  
however, since no solution satisfies the differential equation 

when ; it is not true that 0x = 0
0

C = . The slope field to the 

right shows several particular solutions. Each is a half-line 
ending or starting at (0  The solution in blue represents 
the particular solution satisfying . The domain of 
this solution is the interval  even though the 
function 

, 1).−
( 1) 1y − =

0x−∞ < <
( ) 2 1f x x= − −  has domain of all real x. The 

particular solution to the initial value problem cannot jump 
over the singularity at  just as the particular solutions in the first two examples cannot jump 
over the asymptotes. The blue curve is the unique solution to this initial value problem  

0x =

 
 
 



Other problems to consider: 
 

1. Investigate the solution to the differential equation 21dy y
dx

= −  that satisfies (2) 0y = , and 

give the interval that represents its domain. Compare with the sketch of the solution on a 
slope field. 

 

2. Find the general solution to 2(dy x y
dx

= −1) . Describe the domain for the particular solution 

with initial value 0(0)y y= . The domain interval may depend on the value of 0.y  If possible, 
investigate with technology by drawing solutions on a slope field. 

 
 
 
 
For similar discussion and examples, see David Lomen’s article “Solving Separable Differential 
Equations: Antidifferentiation and Domain Are Both Needed” in the Course Home Pages section 
of AP Calculus at the AP Central website. 
 
 



Population Models 
 

• Exponential Growth: dy ky
dt

=  

 

• Logistic Growth: 1dy yky
dt M

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 

 For small y, the population should grow according to the exponential growth model. For y 
greater than some carrying capacity M the population should decrease. 

 
 Properties: 

1. Equilibrium solutions are y = 0 and y = M. 
2. If , then 0(0) 0y y= > lim ( )

t
y t M

→∞
=  and lim ( ) 0

t
y t

→∞
′ = . 

3. If 0(0)y y=  where 00
2

,My< <  then the graph of  for t > 0 will have an inflection 

point when 

( )y t

.
2
My =  

 

• Logistic Growth with Constant Harvesting: 1dy yky H
dt M

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 There will now be two positive equilibrium values if 0
4

kMH< < . 

 If the initial population is less than the smaller equilibrium value, the population will go 
extinct. If the initial population is greater than the smaller equilibrium value, the population 
will survive. This is illustrated in the graphs below. 

t

Y

Y

dY/dt



 If 
4

kMH > , the population will go extinct for any initial population size 0.y  The time T to 

extinction is given by 
 

0

0

0
1

1

T

y
T dt

yky H
M

= =
⎛ ⎞− −⎜ ⎟
⎝ ⎠

∫ ∫ dy  

  
 
• Predator-Prey Model (also known as Lotka-Volterra Model): 
 
 Let ( )x t  be the prey population at time t, and let  be the predator population at time t (in 

some appropriate units). 
( )y t

 
 Assumptions: 

1. In the absence of the predator, the prey grows at a rate proportional to the current 
population. 

2. In the absence of the prey, the predator dies out at a rate proportional to the current 
population. 

3. The number of encounters between predator and prey is proportional to the product of 
their populations. Each such encounter tends to promote the growth rate of the predator 
and to inhibit the growth rate of the prey. 

 

 The model:  

dx ax bx y
dt
dy c y d x y
dt

= −

= − +
 

 
 Properties: 

1. Equilibrium solutions at (0  and ,0) ,c a
d b

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

2. Solution curves in the xy-plane are closed curves and hence ( )x t  and  are periodic. 
This can be proved using the following observation (the meaning of  as the product of   
d and x, not as a differential, can be determined from context). 

( )y t
d x

 

( )( ) ( )(0 0
0 0

ln ln
a by c dx

dx byc dx a by c a

dy
dy c y d x y a b y c d xdt dy dxdxdx ax bx y y x

dt
a y b y c x d x C

y e x e K

x e y e K x e y e

− −

− −− −

− + − − +
= = ⇒ =

−

⇒ − = − + +

⇒ =

⇒ = = )

 



 for all points ( , )x y  on a solution curve, where 0 0( , )x y  is a given point on the curve. 
(See example below.) 

 
3. What is the average prey population? Let T  be the period of a solution ( ).x t  Then 
 

0 0

0 0

1 1 ( )( )
( )

1 ( )
( )

1 (ln( ( )) ln( (0))

T T

T T

( )y t c y tx x t dt dt
T T d y t

y t cdt dt
Td y t Td

c cy T y
Td d d

′ +
= =

′
= +

= − +

∫ ∫

∫ ∫

=

 

 

 since  Similarly, the average predator population is ( ) (0).y T y= .ay
b

=  Notice, 

therefore, that the average population sizes are always the same for any solution curve, 
and are equal to the equilibrium values. 

 
• Competition Model 
 
 Let ( )x t  and  be two populations at time t that compete for resources. ( )y t
 
 Assumptions: 

1. Each population grows according to a logistic model in the absence of the other 
population. 

2. The number of encounters between the two populations is proportional to the product of 
their populations. Each such encounter tends to inhibit the growth rate of the populations 
because of competition. 

 

The model:  
1

1

2
2

1

1

dx xr x ax y
dt K

dy yr y bx y
dt K

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 

 
 Property: 
 Depending on the relative sizes of a and b, and the initial condition, one or the other species 

dies out and the surviving population stabilizes at its carrying capacity. 
 
 
 
 
Winplot, free software for graphing solutions to differential equations 
http://math.exeter.edu/rparris/ 



Predator-Prey (Lotka-Volterra) Model 
 

2 0.4

3 0.8

dx x xy
dt
dy y x
dt

= −

= − + y
 

 
Let ( )x t  be the prey population at time t, and let  be the predator population at time t (in 
some appropriate units). 

( )y t

 
Assumptions: 
4. In the absence of the predator, the prey grows at a rate proportional to the current population. 
5. In the absence of the prey, the predator dies out at a rate proportional to the current 

population. 
6. The number of encounters between predator and prey is proportional to the product of their 

populations. Each such encounter tends to promote the growth rate of the predator and to 
inhibit the growth rate of the prey. 

 
 
Blue Lines: 

nullcline for 0dx
dt

=  

 
Green Lines: 

nullcline for 0dy
dt

=  

 
Red Dots: 
equilibrium points 
 
Red Curves: 
solution curves 
 
 

 



Why are solution curves cycles in the phase plane? Consider the curve passing through the point 
(2,3). That curve satisfies 
 

( 3 0.8 )
(2 0.4 )

dy y x
dx x y

− +
=

−
,   y = 3 when x = 2 

 
Separating and antidifferentiating yields 
 
2 ln 0.4 3ln 0.8y y x x− = − + +C  or ( )( )3 0.8 2 0.4x yx e y e− − K=  where . 3 1.6 2 1.2 2.82 3 72K e e e− − −= =

 
Let 3 0.8( ) xf x x e−=  and 2 0.4( ) yg y y e−= . The graphs are plotted below with the understanding 
that the positive axis for ( )f x  faces down and the positive axis for  faces to the left. The 
black dot on the x-axis represents a possible x value on the solution curve. Follow the lines from 
that point to the blue 

( )g y

( )f x  curve, to the curve ( ) ( )f x g y K= , and then up. The two points on 
the green  curve where the black line intersect correspond to the two y values such that the 
points ( ,

( )g y
)x y  are on the red solution curve shown in the figure. The black dot can only 

correspond to an x-value on the solution curve as long as the black vertical line intersects the 
green  graph. The relationship ( )g y ( ) ( )f x g y K=  is essentially like a conservation law that 
forces the points ( , )x y  to follow a closed curve in the phase plane. 
 
Note that the maximum of ( )f x  and  occur at the coordinates of the equilibrium point. ( )g y
 

f(x)

g(y)

f(x)*g(y) = K

solution curve

 



What do solutions look like near the equilibrium point at (3.75, 5)? One way to investigate the 
behavior is to linearize the system of differential equations near this point. 
 
Define new variables  and 3.75v x= − 5.w y= −  Then substitute these into each differential 
equation and simplify to get 
 

2( 3.75) 0.4( 3.75)( 5) 1.5 0.4

3( 5) 0.8( 3.75)( 5) 4 0.8

dv dx v v w w
dt dt
dw dy w v w v vw
dt dt

= = + − + + = − −

= = − + + + + = +

vw
 

 
For solutions near the equilibrium point, both v and w are small, and therefore the product vw is 
very small. So let’s ignore this term in each differential equation. This approximation gives the 
linearized system 
 

1.5

4

dv w
dt
dw v
dt

= −

=
 

 
Another way to view these two equations is 1.5 6v w v′′ ′= − = −  and 4 6w v w′′ ′= = − . What 
functions have derivatives that obey such conditions? They are sin( 6 )t  and cos( 6 )t , and 
linear combinations of these two trig function. Solution methods for systems of linear differential 
equations will show that the general solution to the linearized system given above is 
 

( )
1 2

1 2

( ) sin( 6 ) cos( 6 )
2( ) 6 sin( 6 ) cos( 6 )
3

v t C t C t

w t C t C t

= +

= − −
 

 
which can be verified by substituting into the equations. Thus for solutions near the equilibrium 
point in our original system, 
 

( )
1 2

1 2

( ) sin( 6 ) cos( 6 ) 3.75
2( ) 6 sin( 6 ) cos( 6 ) 5
3

x t C t C t

y t C t C t

≈ + +

≈ − − +
 

 
The constants  and  are determined by the initial condition. This means that solution curves 
in the phase plane near the equilibrium point are approximately elliptical, satisfying 

1C 2C

 
2 2 2

1 2
3( 3.75) ( 5)
8

2x y C− + − = +C  

 



with period 2 6 2.5651.π ≈  The figure below shows four solution curves near the equilibrium 
point at (3.75, 5). The window has width 0.1 in each direction. The two lines are x = 3.75 and 
y = 5, the “axes” in the vw-plane. 
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Competition Model 
 

2 1
2

3 1 2
3

dx xx x y
dt
dy yy x
dt

⎛ ⎞= − −⎜ ⎟
⎝ ⎠
⎛ ⎞= − −⎜ ⎟
⎝ ⎠

y
 

 
Let ( )x t  and  be two populations at time t that compete for resources. ( )y t
 
Assumptions: 
3. Each population grows according to a logistic model in the absence of the other population. 
4. The number of encounters between the two populations is proportional to the product of their 

populations. Each such encounter tends to inhibit the growth rate of the populations because 
of competition. 

 
 
The three red dots are the 
equilibrium solutions at (0,3), 
(2,0), and (1,1). The equilibrium at 
(1,1) is unstable. 
 
The black curve is a separatrix. 
This solution curve separates those 
initial conditions that lead to the x 
population going extinct from 
those initial conditions that lead to 
the y population going extinct. 

 
 



Mutualism 
 

0.1

1.5 0.2

dx x xy
dt
dy y x
dt

= − +

= − + y
 

 
Each population will go extinct in the absence of the other population, but working together will 
increase the growth of both populations at a rate proportional to the contact between the two 
populations. [Example: plants and pollinators] 
 
Equilibrium solutions at (0  and ( .  ,0) 7.5,10)
 

 
Blue Lines: 

nullcline for 0dx
dt

=  

 
Green Lines: 

nullcline for 0dy
dt

=  

 
Red Dots: 
equilibrium points 
 
Red Curves: 
solution curves 
 
Black Curves: 
separatices 

 
The separatices are the solution curves in the phase plane that satisfy the implicit equation 
 

ln 0.1 1.5ln 0.2 ln10 1.5ln 7.5 0.5y y x x− + + − = − + −  
 

obtained by solving ( 1.5 0.2 )
( 1 0.1 )

dy y x
dx x y

− +
=

− +
 with the initial point ( . The separatrices going 

from upper left to the equilibrium point (  and from lower right to the equilibrium point 
are the solution curves that separate populations that thrive from those that go extinct. 

7.5,10)

7.5,10)

 



Other Mutualism Models 
 

1
1

2
2

1

1

dx xax r x y
dt K

dy ybx r x y
dt K

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
⎛ ⎞

= − + −⎜ ⎟
⎝ ⎠

 

 
The mutualism benefit from the other population becomes a negative effect on the rate of growth 
if the size of that populations exceeds some value (  or , respectively). 1K 2K
 
 

1
1

2
2

1

1

dx xr x
dt K a y

dy yr y
dt K bx

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

⎛ ⎞
= −⎜ ⎟+⎝ ⎠

 

 
Each population obeys a logistic model with the modification that each species has its carrying 
capacity increased by the presence of the other. Requires 1ab <  or the system can grow 
unboundedly large. The equilibrium point in which both populations are non-zero is 
 

1 2 2 1,
1 1

K aK K bK
ab ab

⎛ ⎞+ +
⎜ ⎟− −⎝ ⎠

. 
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